Frederick H. Jaeger
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederick H. Jaeger.
PLOS ONE | 2011
Lynn Morris; Xi Chen; Munir Alam; Georgia D. Tomaras; Ruijun Zhang; Dawn J. Marshall; Bing Chen; Robert Parks; Andrew Foulger; Frederick H. Jaeger; Michele. Donathan; Mira. Bilska; Elin S. Gray; Salim Safurdeen. Abdool Karim; Thomas B. Kepler; John Whitesides; David C. Montefiori; M. Anthony Moody; Hua-Xin Liao; Barton F. Haynes
Broadly neutralizing antibodies are not commonly produced in HIV-1 infected individuals nor by experimental HIV-1 vaccines. When these antibodies do occur, it is important to be able to isolate and characterize them to provide clues for vaccine design. CAP206 is a South African subtype C HIV-1-infected individual previously shown to have broadly neutralizing plasma antibodies targeting the envelope gp41 distal membrane proximal external region (MPER). We have now used a fluoresceinated peptide tetramer antigen with specific cell sorting to isolate a human neutralizing monoclonal antibody (mAb) against the HIV-1 envelope gp41 MPER. The isolated recombinant mAb, CAP206-CH12, utilized a portion of the distal MPER (HXB2 amino acid residues, 673–680) and neutralized a subset of HIV-1 pseudoviruses sensitive to CAP206 plasma antibodies. Interestingly, this mAb was polyreactive and used the same germ-line variable heavy (VH1-69) and variable kappa light chain (VK3-20) gene families as the prototype broadly neutralizing anti-MPER mAb, 4E10 (residues 672–680). These data indicate that there are multiple immunogenic targets in the C-terminus of the MPER of HIV-1 gp41 envelope and suggests that gp41 neutralizing epitopes may interact with a restricted set of naive B cells during HIV-1 infection.
Journal of Virology | 2013
S. Munir Alam; Hua-Xin Liao; Georgia D. Tomaras; Mattia Bonsignori; Chun-Yen Tsao; Kwan-Ki Hwang; Haiyan Chen; Krissey E. Lloyd; Cindy M. Bowman; Laura L. Sutherland; Thomas L. Jeffries; Daniel M. Kozink; Shelley Stewart; Kara Anasti; Frederick H. Jaeger; Robert Parks; Nicole L. Yates; R. Glenn Overman; Faruk Sinangil; Phillip W. Berman; Punnee Pitisuttithum; Jaranit Kaewkungwal; Sorachai Nitayaphan; Nicos Karasavva; Supachai Rerks-Ngarm; Jerome H. Kim; Nelson L. Michael; Susan Zolla-Pazner; Sampa Santra; Norman L. Letvin
ABSTRACT An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity.
Proceedings of the National Academy of Sciences of the United States of America | 2013
S. Munir Alam; S. Moses Dennison; Baptiste Aussedat; Yusuf Vohra; Peter K. Park; Alberto Fernández-Tejada; Shelley Stewart; Frederick H. Jaeger; Kara Anasti; Julie Blinn; Thomas B. Kepler; Mattia Bonsignori; Hua-Xin Liao; Joseph Sodroski; Samuel J. Danishefsky; Barton F. Haynes
Significance A current key goal of HIV-1 vaccine development is to learn how to induce antibodies that will neutralize many diverse HIV-1 strains. Current HIV-1 vaccines elicit strain-specific neutralizing antibodies, whereas broadly neutralizing antibodies (BnAbs) are not induced and only arise in select HIV-1 chronically infected individuals. One strategy for induction of favored antibody responses is to design and produce homogeneous immunogens with selective expression of BnAb but not dominant epitopes. In this study, we describe the binding properties of chemically synthesized variable loop 1/2 (V1V2) glycopeptides that bind both to mature HIV-1 envelope BnAbs and the receptors of their naïve B cells. These results demonstrate that such synthetic glycopeptides can be immunogens that selectively target BnAb naïve B cells. Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. Broadly neutralizing antibodies (BnAbs) are not induced by current vaccines, but are found in plasma in ∼20% of HIV-1–infected individuals after several years of infection. One strategy for induction of unfavored antibody responses is to produce homogeneous immunogens that selectively express BnAb epitopes but minimally express dominant strain-specific epitopes. Here we report that synthetic, homogeneously glycosylated peptides that bind avidly to variable loop 1/2 (V1V2) BnAbs PG9 and CH01 bind minimally to strain-specific neutralizing V2 antibodies that are targeted to the same envelope polypeptide site. Both oligomannose derivatization and conformational stabilization by disulfide-linked dimer formation of synthetic V1V2 peptides were required for strong binding of V1V2 BnAbs. An HIV-1 vaccine should target BnAb unmutated common ancestor (UCA) B-cell receptors of naïve B cells, but to date no HIV-1 envelope constructs have been found that bind to the UCA of V1V2 BnAb PG9. We demonstrate herein that V1V2 glycopeptide dimers bearing Man5GlcNAc2 glycan units bind with apparent nanomolar affinities to UCAs of V1V2 BnAbs PG9 and CH01 and with micromolar affinity to the UCA of a V2 strain-specific antibody. The higher-affinity binding of these V1V2 glycopeptides to BnAbs and their UCAs renders these glycopeptide constructs particularly attractive immunogens for targeting subdominant HIV-1 envelope V1V2-neutralizing antibody-producing B cells.
PLOS ONE | 2011
S. Moses Dennison; Laura L. Sutherland; Frederick H. Jaeger; Kara Anasti; Robert Parks; Shelley Stewart; Cindy M. Bowman; Shi-Mao Xia; Ruijun Zhang; Xiaoying Shen; Richard M. Scearce; Gilad Ofek; Yongping Yang; Peter D. Kwong; Sampa Santra; Hua-Xin Liao; Georgia D. Tomaras; Norman L. Letvin; Bing Chen; S. Munir Alam; Barton F. Haynes
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.
Cell Host & Microbe | 2014
Ashley M. Trama; M. Anthony Moody; S. Munir Alam; Frederick H. Jaeger; Bradley Lockwood; Robert Parks; Krissey E. Lloyd; Christina Stolarchuk; Richard M. Scearce; Andrew Foulger; Dawn J. Marshall; John F. Whitesides; Thomas L. Jeffries; Kevin Wiehe; Lynn Morris; Bronwen E. Lambson; Kelly A. Soderberg; Kwan-Ki Hwang; Georgia D. Tomaras; Nathan Vandergrift; Katherine J. L. Jackson; Krishna M. Roskin; Scott D. Boyd; Thomas B. Kepler; Hua-Xin Liao; Barton F. Haynes
Monoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env.
Journal of Virology | 2011
S. M. Alam; Hua-Xin Liao; S. M. Dennison; Frederick H. Jaeger; Robert Parks; Kara Anasti; Andrew Foulger; Michele. Donathan; Judith T. Lucas; Laurent Verkoczy; Nathan I. Nicely; Georgia D. Tomaras; Garnett Kelsoe; Bing Chen; Thomas B. Kepler; Barton F. Haynes
ABSTRACT Genetic factors, as well as antigenic stimuli, can influence antibody repertoire formation. Moreover, the affinity of antigen for unmutated naïve B cell receptors determines the threshold for activation of germinal center antibody responses. The gp41 2F5 broadly neutralizing antibody (bNAb) uses the VH2-5 gene, which has 10 distinct alleles that use either a heavy-chain complementarity-determining region 2 (HCDR2) aspartic acid (DH54) or an HCDR2 asparagine (NH54) residue. The 2F5 HCDR2 DH54 residue has been shown to form a salt bridge with gp41 665K; the VH2-5 germ line allele variant containing NH54 cannot do so and thus should bind less avidly to gp41. Thus, the induction of 2F5 bNAb is dependent on both genetic and structural factors that could affect antigen affinity of unmutated naïve B cell receptors. Here, we studied allelic variants of the VH2-5 inferred germ line forms of the HIV-1 gp41 bNAb 2F5 for their antigen binding affinities to gp41 linear peptide and conformational protein antigens. Both VH2-5 2F5 inferred germ line variants bound to gp41 peptides and protein, including the fusion intermediate protein mimic, although more weakly than the mature 2F5 antibody. As predicted, the affinity of the NH54 variant for fusion-intermediate conformation was an order of magnitude lower than that of the DH54 VH2-5 germ line antibody, demonstrating that allelic variants of 2F5 germ line antibodies differentially bind to gp41. Thus, these data demonstrate a genetically determined trait that may affect host responses to HIV-1 envelope epitopes recognized by broadly neutralizing antibodies and has implications for unmutated ancestor-based immunogen design.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Xiaoying Shen; S. Moses Dennison; Pinghuang Liu; Feng Gao; Frederick H. Jaeger; David C. Montefiori; Laurent Verkoczy; Barton F. Haynes; S. Munir Alam; Georgia D. Tomaras
The conserved membrane-proximal external region (MPER) of HIV-1 envelope is a target for the rare broadly neutralizing 2F5, Z13, and 4E10 monoclonal antibodies (mAbs). One strategy to elicit such antibodies is to design an immunogen with increased exposure of the 2F5 and 4E10 mAb epitopes. In this study we characterize a single leucine to serine substitution at position 669 (L669S) in the gp41 Env MPER that confers >250-fold more neutralization sensitivity to 2F5 and 4E10 mAbs than does the wild-type gp41 sequence. On synthetic liposomes, increased solvent exposure of MPER tryptophan residues and stable docking of 2F5 and 4E10 mAbs to mutant MPER peptide liposomes indicate more favorable membrane orientation of MPER neutralizing epitopes with L669S substitution. The time during which virus is sensitive to 2F5 mAb-mediated neutralization is approximately 3-fold longer when the mutation is present. These data suggest that a major contribution to the L669S mutant virus phenotype of enhanced susceptibility to MPER mAbs is prolonged exposure of the MPER neutralizing epitope during viral entry.
Journal of the American Chemical Society | 2013
Baptiste Aussedat; Yusuf Vohra; Peter K. Park; Alberto Fernández-Tejada; S. Munir Alam; S. Moses Dennison; Frederick H. Jaeger; Kara Anasti; Shelley Stewart; Julie Blinn; Hua-Xin Liao; Joseph Sodroski; Barton F. Haynes; Samuel J. Danishefsky
Critical to the search for an effective HIV-1 vaccine is the development of immunogens capable of inducing broadly neutralizing antibodies (BnAbs). A key first step in this process is to design immunogens that can be recognized by known BnAbs. The monoclonal antibody PG9 is a BnAb that neutralizes diverse strains of HIV-1 by targeting a conserved carbohydrate-protein epitope in the variable 1 and 2 (V1V2) region of the viral envelope. Important for recognition are two closely spaced N-glycans at Asn(160) and Asn(156). Glycopeptides containing this synthetically challenging bis-N-glycosylated motif were prepared by convergent assembly, and were shown to be antigenic for PG9. Synthetic glycopeptides such as these may be useful for the development of HIV-1 vaccines based on the envelope V1V2 BnAb epitope.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Genevieve G. Fouda; Frederick H. Jaeger; Joshua D. Amos; Carrie Ho; Erika L. Kunz; Kara Anasti; Lisa Stamper; Brooke E. Liebl; Kimberly H. Barbas; Tomoo Ohashi; M.A. Moseley; Hua-Xin Liao; Harold P. Erickson; S. Munir Alam; Sallie R. Permar
Significance Achieving an AIDS-free generation will require elimination of breast milk transmission of HIV-1, as breastfeeding is a cornerstone of infant survival in developing regions. Antiretroviral prophylaxis considerably reduces postnatal HIV-1 transmission, yet its efficacy is limited by access, adherence, toxicities, and resistance of maternal HIV-1 strains. Alternative, safe strategies of impeding postnatal HIV-1 transmission will be required to eliminate infant HIV-1 infection. In this paper, we identify an innate HIV-neutralizing protein in breast milk, Tenascin-C, which captures and neutralizes HIV-1 virions via binding to the chemokine coreceptor binding site on the HIV-1 Envelope. This protein has the potential to be developed as a prevention strategy for postnatal and other modes of HIV-1 transmission. Achieving an AIDS-free generation will require elimination of postnatal transmission of HIV-1 while maintaining the nutritional and immunologic benefits of breastfeeding for infants in developing regions. Maternal/infant antiretroviral prophylaxis can reduce postnatal HIV-1 transmission, yet toxicities and the development of drug-resistant viral strains may limit the effectiveness of this strategy. Interestingly, in the absence of antiretroviral prophylaxis, greater than 90% of infants exposed to HIV-1 via breastfeeding remain uninfected, despite daily mucosal exposure to the virus for up to 2 y. Moreover, milk of uninfected women inherently neutralizes HIV-1 and prevents virus transmission in animal models, yet the factor(s) responsible for this anti-HIV activity is not well-defined. In this report, we identify a primary HIV-1–neutralizing protein in breast milk, Tenascin-C (TNC). TNC is an extracellular matrix protein important in fetal development and wound healing, yet its antimicrobial properties have not previously been established. Purified TNC captured and neutralized multiclade chronic and transmitted/founder HIV-1 variants, and depletion of TNC abolished the HIV-1–neutralizing activity of milk. TNC bound the HIV-1 Envelope protein at a site that is induced upon engagement of its primary receptor, CD4, and is blocked by V3 loop- (19B and F39F) and chemokine coreceptor binding site-directed (17B) monoclonal antibodies. Our results demonstrate the ability of an innate mucosal host protein found in milk to neutralize HIV-1 via binding to the chemokine coreceptor site, potentially explaining why the majority of HIV-1–exposed breastfed infants are protected against mucosal HIV-1 transmission.
Immunity | 2014
Kevin Wiehe; David Easterhoff; Kan Luo; Nathan I. Nicely; Todd Bradley; Frederick H. Jaeger; S. Moses Dennison; Ruijun Zhang; Krissey E. Lloyd; Christina Stolarchuk; Robert Parks; Laura L. Sutherland; Richard M. Scearce; Lynn Morris; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Faruk Sinangil; Sanjay Phogat; Nelson L. Michael; Jerome H. Kim; Garnett Kelsoe; David C. Montefiori; Georgia D. Tomaras; Mattia Bonsignori; Sampa Santra; Thomas B. Kepler; S. Munir Alam; M. Anthony Moody
In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognition prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. These data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.