Frederick P. Heinzel
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederick P. Heinzel.
Journal of Immunology | 2004
Donald D. Anthony; Nicole L. Yonkers; Anthony B. Post; Robert Asaad; Frederick P. Heinzel; Michael M. Lederman; Paul V. Lehmann; Hernan Valdez
Impaired APC functions may play important roles in chronicity of hepatitis C virus (HCV) and HIV infections. To investigate the separate and combined effects of HCV and HIV infection on immature dendritic cells (DCs), we evaluated myeloid-derived DC (MDC) and plasmacytoid-derived DC (PDC) frequencies and functions, measured by Toll-like receptor ligand-induced IFN-α and IL-12, in healthy controls and subjects with chronic HCV, HIV, and HCV-HIV infection. To evaluate the relation between innate and adaptive immunity, we measured HCV-specific IFN-γ-producing T cell frequency. MDC frequencies tended to be reduced in HIV infection (1.8-fold), while PDC frequencies were minimally reduced in HCV infection (1.4-fold). In contrast, a striking reduction in non-PDC-associated IFN-α production was observed in HIV-infected subjects (17-fold), while PDC-associated IFN-α production was markedly reduced in HCV-infected subjects (20-fold). Both non-PDC and PDC functions were impaired in HCV-HIV coinfection. MDC-associated IL-12 production was markedly reduced in both HCV and HIV-infected subjects (over 10-fold). Functional defects were attenuated with slowly progressive HIV infection. The proportion of subjects with HCV-specific T cell responses, and the number of Ags recognized were reduced in HCV-HIV subjects as compared with HCV singly infected subjects. A positive association was observed between MDC-associated IL-12 production and HCV-specific T cell frequency in HCV-infected subjects. These results indicate that immature DC function is dysregulated in HIV and HCV infections, but differentially, and that these defects are attenuated in slowly progressive HIV infection. These selectively different impairments may contribute to the reduced adaptive immune response to HCV in HCV-HIV coinfection.
Infection and Immunity | 2003
Christine A. Garhart; Frederick P. Heinzel; Steven J. Czinn; John G. Nedrud
ABSTRACT Previous studies with mice have shown that major histocompatibility complex class II (MHC-II) is required for protection from Helicobacter pylori, while MHC-I and antibodies are not. Thus, CD4+ T cells are presumed to play an essential role in protective immunity via secretion of cytokines. To determine which cytokines are associated with a reduction of bacterial load in immunized mice, gastric cytokine expression was examined by semiquantitative reverse transcription-PCR in protected (defined as ≥2-log-unit decrease in bacterial load) and unprotected mice 4 weeks after challenge. Elevated levels of mRNA for interleukin-12p40 (IL-12p40), gamma interferon (IFN-γ), tumor necrosis factor alpha, and inducible nitric oxide synthase (iNOS) were associated with protection in immunized-challenged (I/C) mice, but Th2 cytokine (IL-4, IL-5, IL-10, and IL-13) and chemokine (KC, MIP-2, and MCP-1) expression was not associated with protection. Despite the association of IFN-γ and iNOS message with protection, I/C mice genetically lacking either of these products were able to reduce the bacterial load as well as the wild-type I/C controls. The I/C mice lacking IL-12p40 were not protected compared to unimmunized-challenged mice. All I/C groups developed gastritis. We conclude that neither IFN-γ nor iNOS is essential for vaccine-induced protection from H. pylori infection. The p40 subunit of IL-12, which is a component of both IL-12 and IL-23, is necessary for protection in immunized mice. These findings suggest a novel IFN-γ-independent function of IL-12p40 in effective mucosal immunization against H. pylori.
The Journal of Infectious Diseases | 2003
Henry W. Murray; Andre L. Moreira; Cristina M. Lu; Jennifer L. DeVecchio; Maki Matsuhashi; Xiaojing Ma; Frederick P. Heinzel
In established Leishmania donovani visceral infection in normal mice, anti-interleukin (IL)-10 receptor (IL-10R) monoclonal antibody (MAb) treatment induced intracellular parasite killing within liver macrophages. IL-10R blockade maintained IL-12 protein 40, markedly increased interferon (IFN)-gamma serum levels, and enhanced tissue inducible nitric oxide synthase (iNOS) expression and granuloma assembly. Optimal MAb-induced killing, including synergism with antimony chemotherapy, required endogenous IL-12 and/or IFN-gamma and at least one IFN-gamma-regulated macrophage mechanism-iNOS or phagocyte oxidase. However, in IFN-gamma knockout mice, anti-IL-10R also induced both granuloma formation and leishmanistatic activity. As judged by IL-10R blockade, endogenous IL-10 primarily regulates killing in L. donovani infection by suppressing production of and responses to the Th1 cell-type cytokines, IL-12, and IFN-gamma. However, because anti-IL-10R also released IFN-gamma-independent effects, IL-10 appears to act more broadly and suppresses multiple antileishmanial mechanisms.
Infection and Immunity | 2003
Christine A. Garhart; John G. Nedrud; Frederick P. Heinzel; Norma Sigmund; Steven J. Czinn
ABSTRACT To test the hypothesis that a Th2 response to Helicobacter pylori is necessary for protection and to address the possibility that humoral and Th2 cellular responses may compensate for each other, we generated mice deficient in both interleukin-4 (IL-4) and antibodies. The immunized double-knockout mice were protected from H. pylori challenge, as were the parental strains and wild-type C57BL/6 mice. Neutralization of IL-4 in B-cell-deficient mice did not prevent protection. Immunized IL-5-deficient mice were also protected. Thus, IL-4 and IL-5 are not essential for protection.
Infection and Immunity | 2003
Henry W. Murray; Cristina M. Lu; Elaine B. Brooks; Richard E. Fichtl; Jennifer L. DeVecchio; Frederick P. Heinzel
ABSTRACT CD40 ligand (CD40L)-deficient C57BL/6 mice failed to control intracellular Leishmania donovani visceral infection, indicating that acquired resistance involves CD40-CD40L signaling and costimulation. Conversely, in wild-type C57BL/6 and BALB/c mice with established visceral infection, injection of agonist anti-CD40 monoclonal antibody (MAb) induced killing of ∼60% of parasites within liver macrophages, stimulated gamma interferon (IFN-γ) secretion, and enhanced mononuclear cell recruitment and tissue granuloma formation. Comparable parasite killing was also induced by MAb blockade (inhibition) of cytotoxic T lymphocyte antigen-4 (CTLA-4) which downregulates separate CD28-B7 T-cell costimulation. Optimal killing triggered by both anti-CD40 and anti-CTLA-4 required endogenous IFN-γ and involved interleukin 12. CD40L−/− mice also failed to respond to antileishmanial chemotherapy (antimony), while in normal animals, anti-CD40 and anti-CTLA-4 synergistically enhanced antimony-associated killing. CD40L-CD40 signaling regulates outcome and response to treatment of experimental visceral leishmaniasis, and MAb targeting of T-cell costimulatory pathways (CD40L-CD40 and CD28-B7) yields macrophage activation and immunotherapeutic and immunochemotherapeutic activity.
Antimicrobial Agents and Chemotherapy | 2003
Henry W. Murray; Elaine B. Brooks; Jennifer L. DeVecchio; Frederick P. Heinzel
ABSTRACT To determine if stimulation of Th1-cell-associated immune responses, mediated by interleukin 12 (IL-12) and gamma interferon (IFN-γ), enhance the antileishmanial effect of amphotericin B (AMB), Leishmania donovani-infected BALB/c mice were first treated with (i) exogenous IL-12 to induce IFN-γ, (ii) agonist anti-CD40 monoclonal antibody (MAb) to maintain IL-12 and induce IFN-γ, or (iii) anti-IL-10 receptor (IL-10R) MAb to blockade suppression of IL-12 and IFN-γ. In animals with established visceral infection, low-dose AMB alone (two injections of 1 mg/kg of body weight; total dose, 2 mg/kg) killed 15 to 29% of liver parasites; by themselves, the immunointerventions induced 16 to 33% killing. When the interventions were combined, the leishmanicidal activities increased 3.4-fold (anti-CD40), 6.3-fold (anti-IL-10R), and 9-fold (IL-12) compared with the activities of AMB plus the control preparations; and overall killing (76 to 84%) approximated the 84 to 92% killing effect of 7.5-fold more AMB alone (three injections of 5 mg/kg; total dose, 15 mg/kg). These results suggest that strengthening the host Th1-cell response may be a strategy for the development of AMB-sparing regimens in visceral leishmaniasis.
Journal of Virology | 2009
Sara J. Conry; Kimberly A. Milkovich; Nicole L. Yonkers; Benigno Rodriguez; Helene B. Bernstein; Robert Asaad; Frederick P. Heinzel; Magdalena Tary-Lehmann; Michael M. Lederman; Donald D. Anthony
ABSTRACT Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections impair plasmacytoid dendritic cell (PDC) and natural killer (NK) cell subset numbers and functions, though little is known about PDC-NK cell interactions during these infections. We evaluated PDC-dependent NK cell killing and gamma interferon (IFN-γ) and granzyme B production, using peripheral blood mononuclear cell (PBMC)-based and purified cell assays of samples from HCV- and HIV-infected subjects. CpG-enhanced PBMC killing and IFN-γ and granzyme B activity (dependent on PDC and NK cells) were impaired in viremic HIV infection. In purified PDC-NK cell culture experiments, CpG-enhanced, PDC-dependent NK cell activity was cell contact and IFN-α dependent, and this activity was impaired in viremic HIV infection but not in HCV infection. In heterologous PDC-NK cell assays, impaired PDC-NK cell killing activity was largely attributable to an NK cell defect, while impaired PDC-NK cell IFN-γ-producing activity was attributable to both PDC and NK cell defects. Additionally, the response of NK cells to direct IFN-α stimulation was defective in viremic HIV infection, and this defect was not attributable to diminished IFN-α receptor expression, though IFN-α receptor and NKP30 expression was closely associated with killer activity in viremic HIV infection but not in healthy controls. These data indicate that during uncontrolled HIV infection, PDC-dependent NK cell function is impaired, which is in large part attributable to defective IFN-α-induced NK cell activity and not to altered IFN-α receptor, NKP30, NKP44, NKP46, or NKG2D expression.
Infection and Immunity | 2001
Inger B. Kremer; Meetha P. Gould; Kevin D. Cooper; Frederick P. Heinzel
ABSTRACT Dendritic cells are potent antigen-presenting cells that also produce interleukin-12 (IL-12) during innate and adaptive cellular immune responses and that thereby promote the differentiation of gamma interferon (IFN-γ)-producing Th1-type CD4+ T lymphocytes. We hypothesized that expanded dendritic-cell populations in mice pretreated with the hematopoietic cytokine Flt3L would protect against cutaneous Leishmania major infection. Pretreatment of disease-susceptible BALB/c mice with 10 μg of recombinant Flt3L (rFlt3L) for 9 to 10 days before infection increased lymph node IL-12 p40 productive capacity 20-fold compared to that of saline-injected controls. Furthermore, 9 of 22 (40.9%) rFlt3L-pretreated BALB/c mice resolved their cutaneous infections, whereas none of the 22 control BALB/c mice healed. Healed, rFlt3L-pretreated mice did not develop disease following reinfection. Flt3L pretreatment also reduced parasite numbers 1,000-fold in the cutaneous lesions at 2 weeks after infection relative to numbers in lesions of untreated controls. However, Flt3L pretreatment did not significantly alter L. major-induced IFN-γ and IL-4 production in lymph node culture at 1, 2, and 4 weeks after infection. Despite the lack of Th immune deviation, Flt3L ligand-pretreated lymph nodes expressed up to 10-fold higher levels of IL-12 p40 and inducible (type 2) nitric oxide synthase mRNA at 7 days after infection. In contrast, treatment with rFlt3L after infection failed to protect against disease despite comparable expansions of dendritic cells and IL-12 p40 productive capacity in both infected and uninfected BALB/c mice treated with rFlt3L. We conclude that rFlt3L pretreatment before infection with L. major reduces parasite load and promotes healing of cutaneous lesions without stable cytokine deviation towards a dominant Th1 cytokine phenotype.
Journal of Immunology | 2004
Meetha P. Gould; Jennifer A. Greene; Vijay Bhoj; Jennifer L. DeVecchio; Frederick P. Heinzel
Innate cellular production of IFN-γ is suppressed after repeated exposure to LPS, whereas CpG-containing DNA potentiates IFN-γ production. We compared the modulatory effects of LPS and CpG on specific cellular and cytokine responses necessary for NK-cell dependent IFN-γ synthesis. C3H/HeN mice pretreated with LPS for 2 days generated 5-fold less circulating IL-12 p70 and IFN-γ in response to subsequent LPS challenge than did challenged control mice. In contrast, CpG-pretreated mice produced 10-fold more circulating IFN-γ without similar changes in IL-12 p70 levels, but with 10-fold increases in serum IL-18 relative to LPS-challenged control or endotoxin-tolerant mice. The role of IL-18 in CpG-induced immune potentiation was studied in splenocyte cultures from control, LPS-conditioned, or CpG-conditioned mice. These cultures produced similar amounts of IFN-γ in response to rIL-12 and rIL-18. However, only CpG-conditioned cells produced IFN-γ when cultured with LPS or CpG, and production was ablated in the presence of anti-IL-18R Ab. Anti-IL-18R Ab also reduced in vivo IFN-γ production by >2-fold in CpG-pretreated mice. Finally, combined pretreatment of mice with LPS and CpG suppressed the production of circulating IFN-γ, IL-12 p70, and IL-18 after subsequent LPS challenge. We conclude that CpG potentiates innate IFN-γ production from NK cells by increasing IL-18 availability, but that the suppressive effects of LPS on innate cellular immunity dominate during combined LPS and CpG pretreatment. Multiple Toll-like receptor engagement in vivo during infection can result in functional polarization of innate immunity dominated by a specific Toll-like receptor response.
The Journal of Infectious Diseases | 1999
David K. Sang; J. H. Ouma; Chandy C. John; Christopher C. Whalen; Christopher L. King; Adel A. F. Mahmoud; Frederick P. Heinzel
Kenyan subjects with visceral leishmaniasis were examined for evidence of increased production of soluble interleukin-4 receptor (sIL-4R). Soluble IL-4R regulates the bioactivity of IL-4, a cytokine important in mediating progressive forms of leishmaniasis. Persons with visceral leishmaniasis sustained 8- to 10-fold more circulating sIL-4R compared with Papua New Guinea residents with documented filariasis or uninfected Kenyan and North American subjects. Soluble IL-2R concentrations were elevated nonspecifically in both visceral leishmaniasis and filariasis patients. These findings are significant given that IL-4 induces sIL-4R in mice, and treatment with recombinant sIL-4R cures progressive murine leishmaniasis dependent on IL-4 bioactivity. Further studies are indicated to determine whether the immunologic detection of IL-4 produced in human visceral leishmaniasis is obscured because of sequestration by soluble receptor and whether the production of sIL-4R is relevant to the pathogenesis of visceral leishmaniasis.