Frederick Verbeke
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederick Verbeke.
Nucleic Acids Research | 2013
Evelien Wynendaele; Antoon Bronselaer; Joachim Nielandt; Matthias D’Hondt; Sofie Stalmans; Nathalie Bracke; Frederick Verbeke; Christophe Van de Wiele; Guy De Tré; Bart De Spiegeleer
Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds.
Peptides | 2015
Evelien Wynendaele; Frederick Verbeke; Matthias D’Hondt; An Hendrix; Christophe Van de Wiele; Christian Burvenich; Kathelijne Peremans; Olivier De Wever; Marc Bracke; Bart De Spiegeleer
To date, the precise role of the human microbiome in health and disease states remains largely undefined. Complex and selective crosstalk systems between the microbiome and mammalian cells are also not yet reported. Research up till now mainly focused on bacterial synthesis of virulence factors, reactive oxygen/nitrogen species (ROS/RNS) and hydrogen sulphide, as well as on the activation of exogenous mutagen precursors by intestinal bacteria. We discovered that certain quorum sensing peptides, produced by bacteria, interact with mammalian cells, in casu cancer cells: Phr0662 (Bacillus sp.), EntF-metabolite (Enterococcus faecium) and EDF-derived (Escherichia coli) peptides initiate HCT-8/E11 colon cancer cell invasion, with Phr0662 also promoting angiogenesis. Our findings thus indicate that the human microbiome, through their quorum sensing peptides, may be one of the factors responsible for cancer metastasis.
Journal of Pharmaceutical and Biomedical Analysis | 2014
Matthias D’Hondt; Nathalie Bracke; Lien Taevernier; Bert Gevaert; Frederick Verbeke; Evelien Wynendaele; Bart De Spiegeleer
Peptides are an increasingly important group of pharmaceuticals, positioned between classic small organic molecules and larger bio-molecules such as proteins. Currently, the peptide drug market is growing twice as fast as other drug markets, illustrating the increasing clinical as well as economical impact of this medicine group. Most peptides today are manufactured by solid-phase peptide synthesis (SPPS). This review will provide a structured overview of the most commonly observed peptide-related impurities in peptide medicines, encompassing the active pharmaceutical ingredients (API or drug substance) as well as the finished drug products. Not only is control of these peptide-related impurities and degradants critical for the already approved and clinically used peptide-drugs, these impurities also possess the capability of greatly influencing initial functionality studies during early drug discovery phases, possibly resulting in erroneous conclusions. The first group of peptide-related impurities is SPPS-related: deletion and insertion of amino acids are related to inefficient Fmoc-deprotection and excess use of amino acid reagents, respectively. Fmoc-deprotection can cause racemization of amino acid residues and thus diastereomeric impurities. Inefficient deprotection of amino acid side chains results into peptide-protection adducts. Furthermore, unprotected side chains can react with a variety of reagents used in the synthesis. Oxidation of amino acid side chains and dimeric-to-oligomeric impurities were also observed. Unwanted peptide counter ions such as trifluoroacetate, originating from the SPPS itself or from additional purification treatments, may also be present in the final peptide product. Contamination of the desired peptide product by other unrelated peptides was also seen, pointing out the lack of appropriate GMP. The second impurity group results from typical peptide degradation mechanisms such as β-elimination, diketopiperazine, pyroglutamate and succinimide formation. These SPPS- and degradation-related impurity types can also found in the finished peptide drug products, which can additionally contain a third group of related impurities, i.e. the API-excipient degradation products.
PLOS ONE | 2015
Bart De Spiegeleer; Frederick Verbeke; Matthias D’Hondt; An Hendrix; Christophe Van de Wiele; Christian Burvenich; Kathelijne Peremans; Olivier De Wever; Marc Bracke; Evelien Wynendaele
The role of the human microbiome on cancer progression remains unclear. Therefore, in this study, we investigated the influence of some quorum sensing peptides, produced by diverse commensal or pathogenic bacteria, on breast cancer cell invasion and thus cancer outcome. Based on microscopy, transcriptome and Chick Chorioallantoic Membrane (CAM) analyses, four peptides (PhrG from B. subtilis, CSP from S. mitis and EDF from E. coli, together with its tripeptide analogue) were found to promote tumour cell invasion and angiogenesis, thereby potentially influencing tumour metastasis. Our results offer not only new insights on the possible role of the microbiome, but also further opportunities in cancer prevention and therapy by competing with these endogenous molecules and/or by modifying people’s life style.
PLOS ONE | 2015
Evelien Wynendaele; Frederick Verbeke; Sofie Stalmans; Bert Gevaert; Yorick Janssens; Christophe Van de Wiele; Kathelijne Peremans; Christian Burvenich; Bart De Spiegeleer
Bacteria communicate with each other by the use of signaling molecules, a process called ‘quorum sensing’. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.
Journal of Pharmaceutical Analysis | 2015
Frederick Verbeke; Evelien Wynendaele; Sarah Braet; Matthias D’Hondt; Bart De Spiegeleer
Peptides are becoming an important class of molecules in the pharmaceutical field. Closely related peptide-impurities in peptides are inherent to the synthesis approach and have demonstrated to potentially mask biomedical experimental results. Quorum sensing peptides are attracting high interest in R&D and therefore a representative set of quorum sensing peptides, with a requested purity of at least 95.0%, was evaluated for their purity and nature of related impurities. In-house quality control (QC) revealed a large discrepancy between the purity levels as stated on the supplier׳s certificate of analysis and our QC results. By using our QC analysis flowchart, we demonstrated that only 44.0% of the peptides met the required purity. The main compound of one sample was even found to have a different structure compared to the desired peptide. We also found that the majority of the related impurities were lacking amino acid(s) in the desired peptide sequence. Relying on the certificates of analysis as provided by the supplier might have serious consequences for peptide research, and peptide-researchers should implement and maintain a thorough in-house QC.
Journal of Pharmaceutical and Biomedical Analysis | 2016
Sofie Stalmans; Bert Gevaert; Frederick Verbeke; Matthias D'Hondt; Nathalie Bracke; Evelien Wynendaele; Bart De Spiegeleer
During fundamental research, it is recommended to evaluate the test compound identity and purity in order to obtain reliable study outcomes. For peptides, quality control (QC) analyses are routinely performed using reversed-phase liquid chromatography coupled to an ultraviolet (UV) detector system. These traditional QC methods, using a C18 column and a linear gradient with formic acid (FA) as acidic modifier in the mobile phase, might not result in optimal chromatographic performance for basic peptides due to their cationic nature and hence may lead to erroneous results. Therefore, the influence of the used chromatographic system on the final QC results of basic peptides was evaluated using five cationic cell-penetrating peptides and five C18-chromatographic systems, differing in the column particle size (high performance liquid chromatography (HPLC) versus ultra-high performance liquid chromatography (UHPLC)), the acidic modifier (FA versus trifluoroacetic acid (TFA)), and the column temperature (30 °C versus 60 °C). Our results indicate that a UHPLC system with the C18 column thermostated at 30 °C and a mobile phase containing TFA, provides the most suitable routine QC analysis method for cationic peptides, outperforming in sensitivity and resolution compared to the other systems. We also demonstrate the use of a single quad mass spectrometry (MS) detector system during QC analysis of (cationic) peptides, allowing identification of the peptide and its impurities, as well as the evaluation of the peak purity.
Frontiers in Neuroscience | 2017
Frederick Verbeke; Severine De Craemer; Nathan Debunne; Yorick Janssens; Evelien Wynendaele; Christophe Van de Wiele; Bart De Spiegeleer
The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans.
Journal of Pharmaceutical Analysis | 2014
Matthias D’Hondt; Frederick Verbeke; Sofie Stalmans; Bert Gevaert; Evelien Wynendaele; Bart De Spiegeleer
Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B1, caspofungin, daptomycin and gramicidin A1), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA). In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D-value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ (Pmax/Pexp) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed.
Biopolymers | 2015
Evelien Wynendaele; Bert Gevaert; Sofie Stalmans; Frederick Verbeke; Bart De Spiegeleer
Quorum sensing peptides are signalling molecules that are produced by mainly gram‐positive bacteria. These peptides can exert different effects, ranging from intra‐ and interspecies bacterial virulence to bacterial–host interactions. To better comprehend these functional differences, we explored their chemical space, bacterial species distribution and receptor‐binding properties using multivariate data analyses, with information obtained from the Quorumpeps database. The quorum sensing peptides can be categorized into three main clusters, which, in turn, can be divided into several subclusters: the classification is based on characteristic chemical properties, including peptide size/compactness, hydrophilicity/lipophilicity, cyclization and the presence of (unnatural) S‐containing and aromatic amino acids. Most of the bacterial species synthesize peptides located into one cluster. However, some Streptococcus, Stapylococcus, Clostridium, Bacillus and Lactobacillus species produce peptides that are distributed over more than one cluster, with the quorum sensing peptides of Bacillus subtilis even occupying the total peptide space. The AgrC, FsrC and LamC receptors are only activated by cyclic (thio)lacton or lactam quorum sensing peptides, while the lipophilic isoprenyl‐modified peptides solely bind the ComP receptor in Bacillus species.