Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederik-Jan van Schooten is active.

Publication


Featured researches published by Frederik-Jan van Schooten.


Mutation Research\/reviews in Genetic Toxicology | 1996

DNA adducts and chronic degenerative diseases. Pathogenetic relevance and implications in preventive medicine

Silvio De Flora; Alberto Izzotti; Kurt Randerath; Erika Randerath; Helmut Bartsch; Jagadeesan Nair; Roumen Balansky; Frederik-Jan van Schooten; Paolo Degan; Gilberto Fronza; Debra Walsh; Joellen Lewtas

Chronic degenerative diseases are the leading causes of death in developed countries. Their control is exceedingly difficult due to their multiplicity and diversity, the interconnection with a network of multiple risk factors and protective factors, the long latency and multistep pathogenesis, and the multifocal localization. Adducts to nuclear DNA are biomarkers evaluating the biologically effective dose, reflecting an enhanced risk of developing a mutation-related disease more realistically than the external exposure dose. The localization and accumulation of these promutagenic lesions in different organs are the composite result of several factors, including (a) toxicokinetics (first-pass effect); (b) local and distant metabolism; (c) efficiency and fidelity of DNA repair; and (d) cell proliferation rate. The last factor will affect not only the dilution of DNA adducts but also the possible evolution towards either destructive processes, such as emphysema or cardiomyopathies, or proliferative processes, such as benign or malignant tumors at various sites. They also include heart tumors affecting fetal myocytes after transplacental exposure to DNA-binding agents, blood vessel tumors, and atherosclerotic plaques. In this article, particular emphasis is given to molecular alterations in the heart, which is the preferential target for the formation of DNA adducts in smokers, and in human aorta, where an extensive molecular epidemiology project is documenting the systematic presence of adducts to the nuclear DNA of smooth muscle cells from atherosclerotic lesions, and their significant correlation with known atherogenic risk factors. Exocyclic DNA adducts resulting from lipid peroxidation, and age-related indigenous adducts (I-compounds) may also originate from endogenous sources, chronic infections and infestations, and inflammatory processes. Type II I-compounds are bulky DNA lesions resulting from oxidative stress, whereas type II-compounds are presumably normal DNA modifications, which display positive correlations with median life span and are decreased in cancer and other pathological conditions. Profiles of type II-compounds strongly depend on diet and are related to the antidegenerative effects of caloric/ dietary restriction. Even broader is the possible meaning of adducts to mitochondrial DNA, which have been detected in rodents exposed to genotoxic agents and complex mixtures, as well as in untreated rodents, in larger amounts when compared to the nuclear DNA of the same cells. Mutations in mitochondrial DNA increase the number of oxidative phosphorylation-defective cells, especially in energy-requiring postmitotic tissues such as brain, heart and skeletal muscle, thereby playing an important role in aging and a variety of chronic degenerative diseases. A decreased formation of DNA adducts is an indicator of reduced risk of developing the associated disease. Therefore, these molecular dosimeters can be used as biomarkers in the prevention of chronic degenerative diseases, pursued either by avoiding exposure to adduct-forming agents or by using chemopreventive agents. Interventions addressed to the human organism by means of dietary measures or pharmacological agents have encountered a broad consensus in the area of cardiovascular diseases, and are deserving a growing interest also in cancer prevention. The efficacy of chemopreventive agents can be assessed by evaluating inhibition of nuclear DNA or mitochondrial DNA adduct formation in vitro, in animal models, and in phase II clinical trials in high-risk individuals.


Particle and Fibre Toxicology | 2011

Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms.

Agnes M. Scherbart; Julia Langer; Alexey Bushmelev; Damiёn van Berlo; Petra Haberzettl; Frederik-Jan van Schooten; Annette Schmidt; Christine R. Rose; Roel P. F. Schins; Catrin Albrecht

Inhalation of (nano)particles may lead to pulmonary inflammation. However, the precise mechanisms of particle uptake and generation of inflammatory mediators by alveolar macrophages (AM) are still poorly understood. The aim of this study was to investigate the interactions between particles and AM and their associated pro-inflammatory effects in relation to particle size and physico-chemical properties.NR8383 rat lung AM were treated with ultrafine (uf), fine (f) TiO2 or fine crystalline silica (DQ12 quartz). Physico-chemical particle properties were investigated by transmission electron microscopy, elemental analysis and thermogravimetry. Aggregation and agglomeration tendency of the particles were determined in assay-specific suspensions by means of dynamic light scattering.All three particle types were rapidly taken up by AM. DQ12 and ufTiO2 , but not fTiO2 , caused increased extracellular reactive oxygen species (ROS), heme oxygenase 1 (HO-1) mRNA expression and tumor necrosis factor (TNF)-α release. Inducible nitric oxide synthase (iNOS) mRNA expression was increased most strongly by ufTiO2 , while DQ12 exclusively triggered interleukin (IL) 1β release. However, oscillations of intracellular calcium concentration and increased intracellular ROS were observed with all three samples. Uptake inhibition experiments with cytochalasin D, chlorpromazine and a Fcγ receptor II (FcγRII) antibody revealed that the endocytosis of fTiO2 by the macrophages involves actin-dependent phagocytosis and macropinocytosis as well as clathrin-coated pit formation, whereas the uptake of ufTiO2 was dominated by FcγIIR. The uptake of DQ12 was found to be significantly reduced by all three inhibitors. Our findings suggest that the contrasting AM responses to fTiO2 , ufTiO2 and DQ12 relate to differences in the involvement of specific uptake mechanisms.


Free Radical Research | 2004

In vitro and in vivo studies on oxygen free radical and DNA adduct formation in rat lung and liver during benzo[a]pyrene metabolism

Jacob J. Briedé; Roger W. L. Godschalk; Marijn T.G. Emans; Theo M. de Kok; Ebienus van Agen; Jan M. S. van Maanen; Frederik-Jan van Schooten; Jos Kleinjans

Reactive oxygen species (ROS), possibly produced during the metabolic conversion of benzo(a)pyrene (B[a]P), could be involved in B[a]P-induced genotoxicity and, eventually, carcinogenicity. Therefore, ROS formation by rat lung and liver microsomes was studied in vitro by electron spin resonance (ESR/EPR) spectrometry. B[a]P-mediated generation of ROS was detected in incubations with rat lung, but not with liver microsomes. Inhibition of cytochrome P450 (CYP450) by the non isoform-specific inhibitor SKF-525A resulted in a complete inhibition of B[a]P-dependent ROS formation, whereas ROS formation was not affected by inhibition of prostaglandin H synthase by indomethacin. Subsequently, bulky DNA adduct formation and 8-oxo-dG levels after a single oral dose of B[a]P were examined in vivo in rat lung and liver, in combination with urinary excretion of 8-oxodG. B[a]P exposure resulted in increased urinary 8-oxo-dG levels. On the contrary, 8-oxo-dG levels decreased in liver and lung after B[a]P exposure. Bulky DNA adducts reached higher levels and were more persistent in rat lung than in liver. These results indicate that ROS are generated during the CYP450 dependent metabolism of B[a]P, particularly in the rat lung, but this does not necessarily result in increased levels of oxidative DNA damage in vivo, possibly by induction of DNA repair mechanisms.


Chemosphere | 1994

Biochemical markers in feral roach (Rutilus rutilus) in relation to the bioaccumulation of organic trace pollutants

Ron van der Oost; Laura van Gastel; Dennis Worst; Karel Satumalay; Frederik-Jan van Schooten; Henk Heida; Nico P. E. Vermeulen

The levels of organic trace contaminants, including polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), were analyzed in sediments and in roach (Rutilus rutilus, a common fish in Dutch freshwater) from two Amsterdam lakes with different pollutant levels. Roach muscle tissue levels of PCBs and OCPs reflected those found in the sediments. PAH muscle tissue levels, however, were higher in roach from the less polluted lake. In addition, a suite of biochemical parameters was measured in roach livers in order to evaluate their utility as biomarkers of aquatic pollution. None of the phase I-enzymes (total cytochrome P450 [cyt P450], cytochrome b5 [cyt b5], cytochrome P450 1A [P450 1A], ethoxyresorufin O-deethylase [EROD] and NADPH cytochrome c reductase [RED]) appeared to be induced in roach from the polluted site. On the contrary, cyt P450 and cyt b5 were significantly inhibited in roach from the more polluted lake. These findings were consistent with the results of measurements on phase II-enzymes. Glutathione S-transferase [GST] activity was significantly inhibited in roach from the polluted site, while no significant changes in the co-factor levels of glutathione [GSH or GSSG] were observed. Hepatic DNA adduct levels were the same in roach from the more polluted and the less polluted lake. Accordingly, the hepatic biochemical parameters measured in this study cannot be considered reliable indicators of chemical pollution or contaminant stress in roach from the polluted lake.


Trends in Molecular Medicine | 2015

Exhaled Molecular Fingerprinting in Diagnosis and Monitoring: Validating Volatile Promises

Agnes W. Boots; Lieuwe D. Bos; Marc P. van der Schee; Frederik-Jan van Schooten; Peter J. Sterk

Medical diagnosis and phenotyping increasingly incorporate information from complex biological samples. This has promoted the development and clinical application of non-invasive metabolomics in exhaled air (breathomics). In respiratory medicine, expired volatile organic compounds (VOCs) are associated with inflammatory, oxidative, microbial, and neoplastic processes. After recent proof of concept studies demonstrating moderate to good diagnostic accuracies, the latest efforts in breathomics are focused on optimization of sensor technologies and analytical algorithms, as well as on independent validation of clinical classification and prediction. Current research strategies are revealing the underlying pathophysiological pathways as well as clinically-acceptable levels of diagnostic accuracy. Implementing recent guidelines on validating molecular signatures in medicine will enhance the clinical potential of breathomics and the development of point-of-care technologies.


The FASEB Journal | 2012

Cigarette smoke-induced transgenerational alterations in genome stability in cord blood of human F1 offspring

Julian Laubenthal; O. Zlobinskaya; Krzysztof Poterlowicz; Adolf Baumgartner; Michal R. Gdula; Eleni Fthenou; Maria Keramarou; Sarah J. Hepworth; Jos Kleinjans; Frederik-Jan van Schooten; Gunnar Brunborg; Roger W. L. Godschalk; Thomas Schmid; Diana Anderson

The relevance of preconceptional and prenatal toxicant exposures for genomic stability in offspring is difficult to analyze in human populations, because gestational exposures usually cannot be separated from preconceptional exposures. To analyze the roles of exposures during gestation and conception on genomic stability in the offspring, stability was assessed via the Comet assay and highly sensitive, semiautomated confocal laser scans of γH2AX foci in cord, maternal, and paternal blood as well as spermatozoa from 39 families in Crete, Greece, and the United Kingdom. With use of multivariate linear regression analysis with backward selection, preconceptional paternal smoking (% tail DNA: P> 0.032; γH2AX foci: P>0.018) and gestational maternal (% tail DNA: P> 0.033) smoking were found to statistically significantly predict DNA damage in the cord blood of F1 offspring. Maternal passive smoke exposure was not identified as a predictor of DNA damage in cord blood, indicating that the effect of paternal smoking may be transmitted via the spermatozoal genome. Taken together, these studies reveal a role for cigarette smoke in the induction of DNA alterations in human F1 offspring via exposures of the fetus in utero or the paternal germline. Moreover, the identification of transgenerational DNA alterations in the unexposed F1 offspring of smoking‐exposed fathers supports the claim that cigarette smoke is a human germ cell mutagen.—Laubenthal, J., Zlobinskaya, O., Poterlowicz, K., Baumgartner, A., Gdula, M. R., Fthenou, E., Keramarou, M., Hepworth, S. J., Kleinjans, J. C. S., van Schooten, F.‐J., Brunborg, G., Godschalk, R. W., Schmid, T. E., Anderson, D. Cigarette smoke‐induced transgenerational alterations in genome stability in cord blood of human F1 offspring. FASEB J. 26, 3946–3956 (2012). www.fasebj.org


European Respiratory Journal | 2017

A European Respiratory Society technical standard: exhaled biomarkers in lung disease

Ildiko Horvath; Peter J. Barnes; Stelios Loukides; Peter J. Sterk; Marieann Högman; Anna-Carin Olin; Anton Amann; Balazs Antus; Eugenio Baraldi; Andras Bikov; Agnes W. Boots; Lieuwe D. Bos; Paul Brinkman; Caterina Bucca; Giovanna E. Carpagnano; Massimo Corradi; Simona M. Cristescu; Johan C. de Jongste; Anh Tuan Dinh-Xuan; Edward Dompeling; Niki Fens; Stephen J. Fowler; Jens M. Hohlfeld; Olaf Holz; Quirijn Jöbsis; Kim D. G. van de Kant; Hugo Knobel; Konstantinos Kostikas; Lauri Lehtimäki; Jon O. Lundberg

Breath tests cover the fraction of nitric oxide in expired gas (FENO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FENO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FENO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management. Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members. Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised. Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice. ERS technical standard: exhaled biomarkers in lung disease http://ow.ly/mAjr309DBOP


Mutagenesis | 2013

An ECVAG inter-laboratory validation study of the comet assay: inter-laboratory and intra-laboratory variations of DNA strand breaks and FPG-sensitive sites in human mononuclear cells

Clara Ersson; Peter Møller; Lykke Forchhammer; Steffen Loft; Amaya Azqueta; Roger W. L. Godschalk; Frederik-Jan van Schooten; George D. D. Jones; Jennifer A. Higgins; Marcus S. Cooke; Vilas Mistry; Mahsa Karbaschi; David H. Phillips; Osman Sozeri; Michael N. Routledge; Kirsty Nelson-Smith; Patrizia Riso; Marisa Porrini; Giuseppe Matullo; Alessandra Allione; Maciej Stępnik; Magdalena Ferlińska; João Paulo Teixeira; Solange Costa; L.A. Corcuera; Adela López de Cerain; Blanca Laffon; Vanessa Valdiglesias; Andrew R. Collins; Lennart Möller

The alkaline comet assay is an established, sensitive method extensively used in biomonitoring studies. This method can be modified to measure a range of different types of DNA damage. However, considerable differences in the protocols used by different research groups affect the inter-laboratory comparisons of results. The aim of this study was to assess the inter-laboratory, intra-laboratory, sample and residual (unexplained) variations in DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites measured by the comet assay by using a balanced Latin square design. Fourteen participating laboratories used their own comet assay protocols to measure the level of DNA strand breaks and FPG-sensitive sites in coded samples containing peripheral blood mononuclear cells (PBMC) and the level of DNA strand breaks in coded calibration curve samples (cells exposed to different doses of ionising radiation) on three different days of analysis. Eleven laboratories found dose-response relationships in the coded calibration curve samples on two or three days of analysis, whereas three laboratories had technical problems in their assay. In the coded calibration curve samples, the dose of ionising radiation, inter-laboratory variation, intra-laboratory variation and residual variation contributed to 60.9, 19.4, 0.1 and 19.5%, respectively, of the total variation. In the coded PBMC samples, the inter-laboratory variation explained the largest fraction of the overall variation of DNA strand breaks (79.2%) and the residual variation (19.9%) was much larger than the intra-laboratory (0.3%) and inter-subject (0.5%) variation. The same partitioning of the overall variation of FPG-sensitive sites in the PBMC samples indicated that the inter-laboratory variation was the strongest contributor (56.7%), whereas the residual (42.9%), intra-laboratory (0.2%) and inter-subject (0.3%) variations again contributed less to the overall variation. The results suggest that the variation in DNA damage, measured by comet assay, in PBMC from healthy subjects is assay variation rather than variation between subjects.


Toxicological Sciences | 2015

Pulmonary Inflammation Impacts on CYP1A1- Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo(a)pyrene

Volker M. Arlt; Annette M. Krais; R.W.L. Godschalk; Yanira Riffo-Vasquez; Iveta Mrizova; Candice Roufosse; Charmaine Corbin; Quan Shi; Eva Frei; Marie Stiborová; Frederik-Jan van Schooten; David H. Phillips; Domenico Spina

Pulmonary inflammation can contribute to the development of lung cancer in humans. We investigated whether pulmonary inflammation alters the genotoxicity of polycyclic aromatic hydrocarbons (PAHs) in the lungs of mice and what mechanisms are involved. To model nonallergic acute inflammation, mice were exposed intranasally to lipopolysaccharide (LPS; 20 µg/mouse) and then instilled intratracheally with benzo[a]pyrene (BaP; 0.5 mg/mouse). BaP-DNA adduct levels, measured by 32P-postlabeling analysis, were approximately 3-fold higher in the lungs of LPS/BaP-treated mice than in mice treated with BaP alone. Pulmonary Cyp1a1 enzyme activity was decreased in LPS/BaP-treated mice relative to BaP-treated mice suggesting that pulmonary inflammation impacted on BaP-induced Cyp1a1 activity in the lung. Our results showed that Cyp1a1 appears to be important for BaP detoxification in vivo and that the decrease of pulmonary Cyp1a1 activity in LPS/BaP-treated mice results in a decrease of pulmonary BaP detoxification, thereby enhancing BaP genotoxicity (ie, DNA adduct formation) in the lung. Because less BaP was detoxified by Cyp1a1 in the lungs of LPS/BaP-treated mice, more BaP circulated via the blood to extrapulmonary tissues relative to mice treated with BaP only. Indeed, we observed higher BaP-DNA adduct levels in livers of LPS/BaP-treated mice compared with BaP-treated mice. Our results indicate that pulmonary inflammation could be a critical determinant in the induction of genotoxicity in the lung by PAHs like BaP. Cyp1a1 appears to be involved in both BaP bioactivation and detoxification although the contribution of other enzymes to BaP-DNA adduct formation in lung and liver under inflammatory conditions remains to be explored.


Scientific Reports | 2015

Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia

Ronny Schnabel; Rianne Fijten; Agnieszka Smolinska; J.W. Dallinga; Marie-Louise Boumans; Ellen E. Stobberingh; Agnes W. Boots; Paul Roekaerts; Dennis C. J. J. Bergmans; Frederik-Jan van Schooten

Ventilator-associated pneumonia (VAP) is a nosocomial infection occurring in the intensive care unit (ICU). The diagnostic standard is based on clinical criteria and bronchoalveolar lavage (BAL). Exhaled breath analysis is a promising non-invasive method for rapid diagnosis of diseases and contains volatile organic compounds (VOCs) that can differentiate diseased from healthy individuals. The aim of this study was to determine whether analysis of VOCs in exhaled breath can be used as a non-invasive monitoring tool for VAP. One hundred critically ill patients with clinical suspicion of VAP underwent BAL. Before BAL, exhaled air samples were collected and analysed by gas chromatography time-of-flight mass spectrometry (GC-tof-MS). The clinical suspicion of VAP was confirmed by BAL diagnostic criteria in 32 patients [VAP(+)] and rejected in 68 patients [VAP(−)]. Multivariate statistical comparison of VOC profiles between VAP(+) and VAP(−) revealed a subset of 12 VOCs that correctly discriminated between those two patient groups with a sensitivity and specificity of 75.8% ± 13.5% and 73.0% ± 11.8%, respectively. These results suggest that detection of VAP in ICU patients is possible by examining exhaled breath, enabling a simple, safe and non-invasive approach that could diminish diagnostic burden of VAP.

Collaboration


Dive into the Frederik-Jan van Schooten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catrin Albrecht

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmut Bartsch

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge