Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederik Kotz is active.

Publication


Featured researches published by Frederik Kotz.


Nature | 2017

Three-dimensional printing of transparent fused silica glass

Frederik Kotz; Karl Arnold; Werner Bauer; Dieter Schild; Nico Keller; Kai Sachsenheimer; Tobias M. Nargang; Christiane Richter; Dorothea Helmer; Bastian E. Rapp

Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.


Advanced Materials | 2016

Liquid Glass: A Facile Soft Replication Method for Structuring Glass

Frederik Kotz; Klaus Plewa; Werner Bauer; Norbert Schneider; Nico Keller; Tobias M. Nargang; Dorothea Helmer; Kai Sachsenheimer; Michael Schäfer; Matthias Worgull; Christian Greiner; Christiane Richter; Bastian E. Rapp

Liquid glass is a photocurable amorphous silica nanocomposite that can be structured using soft replication molds and turned into glass via thermal debinding and sintering. Simple polymer bonding techniques allow the fabrication of complex microsystems in glass like microfluidic chips. Liquid glass is a step toward prototyping of glass microstructures at low cost without requiring cleanroom facilities or hazardous chemicals.


Scientific Reports | 2017

Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications

Dorothea Helmer; Nico Keller; Frederik Kotz; Friederike Stolz; Christian Greiner; Tobias M. Nargang; Kai Sachsenheimer; Bastian E. Rapp

Superhydrophobic surfaces and surface coatings are of high interest for many applications in everyday life including non-wetting and low-friction coatings as well as functional clothing. Manufacturing of these surfaces is intricate since superhydrophobicity requires structuring of surfaces on a nano- to microscale. This delicate surface structuring makes most superhydrophobic surfaces very sensitive to abrasion and renders them impractical for real-life applications. In this paper we present a transparent fluorinated polymer foam that is synthesized by a simple one-step photoinitiated radical polymerization. We term this material “Fluoropor”. It possesses an inherent nano-/microstructure throughout the whole bulk material and is thus insensitive to abrasion as its superhydrophobic properties are not merely due to a thin-layer surface-effect. Due to its foam-like structure with pore sizes below the wavelength of visible light Fluoropor appears optically transparent. We determined contact angles, surface energy, wear resistance and Vickers hardness to highlight Fluoropor’s applicability for real-word applications.


Biomedical Microdevices | 2016

Numerics made easy: solving the Navier–Stokes equation for arbitrary channel cross-sections using Microsoft Excel

Christiane Richter; Frederik Kotz; Stefan Giselbrecht; Dorothea Helmer; Bastian E. Rapp

The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier–Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier–Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier–Stokes equation for arbitrary channel cross-sections.


Advanced Materials | 2018

Glassomer-Processing Fused Silica Glass Like a Polymer

Frederik Kotz; Norbert Schneider; Andreas Striegel; Andre Wolfschläger; Nico Keller; Matthias Worgull; Werner Bauer; Dieter Schild; Marcel Milich; Christian Greiner; Dorothea Helmer; Bastian E. Rapp

Fused silica glass is one of the most important high-performance materials for scientific research, industry, and society. However due to its high chemical and thermal resistance as well as high hardness, fused silica glass is notoriously difficult to structure. This work introduces Glassomer, a solid nanocomposite, which can be structured using polymer molding and subtractive technologies at submicrometer resolution. After polymer processing Glassomer is turned into optical grade fused silica glass during a final heat treatment. The resulting glass has the same optical transparency as commercial fused silica and a smooth surface with a roughness of a few nanometers. This work makes high-performance fused silica glass components accessible to high-throughput fabrication technologies and will enable numerous optical, photonic and medical applications in science and industry.


Scientific Reports | 2017

Suspended Liquid Subtractive Lithography: One-step generation of 3D channel geometries in viscous curable polymer matrices

Dorothea Helmer; Achim Voigt; Stefan F. Wagner; Nico Keller; Kai Sachsenheimer; Frederik Kotz; Tobias M. Nargang; Bastian E. Rapp

The miniaturization of synthesis, analysis and screening experiments is an important step towards more environmentally friendly chemistry, statistically significant biology and fast and cost-effective medicinal assays. The facile generation of arbitrary 3D channel structures in polymers is pivotal to these techniques. Here we present a method for printing microchannels directly into viscous curable polymer matrices by injecting a surfactant into the uncured material via a steel capillary attached to a 3D printer. We demonstrate this technique using polydimethylsiloxane (PDMS) one of the most widely used polymers for the fabrication of, e. g. microfluidic chips. We show that this technique which we term Suspended Liquid Subtractive Lithography (SLSL) is well suited for printing actuators, T-junctions and complex three dimensional structures. The formation of truly arbitrary channels in 3D could revolutionize the fabrication of miniaturized chips and will find broad application in biology, chemistry and medicine.


Micromachines | 2018

Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices

Frederik Kotz; Patrick Risch; Dorothea Helmer; Bastian E. Rapp

Highly fluorinated perfluoropolyether (PFPE) methacrylates are of great interest for transparent and chemically resistant microfluidic chips. However, so far only a few examples of material formulations for three-dimensional (3D) printing of these polymers have been demonstrated. In this paper we show that microfluidic chips can be printed using these highly fluorinated polymers by 3D stereolithography printing. We developed photocurable resin formulations that can be printed in commercial benchtop stereolithography printers. We demonstrate that the developed formulations can be printed with minimal cross-sectional area of 600 µm for monolithic embedded microfluidic channels and 200 µm for open structures. The printed and polymerized PFPE methacrylates show a good transmittance above 70% at wavelengths between 520–900 nm and a high chemical resistance when being exposed to organic solvents. Microfluidic mixers were printed to demonstrate the great variability of different designs that can be printed using stereolithography.


Proceedings of SPIE | 2015

Rapid prototyping of glass microfluidic chips

Frederik Kotz; Klaus Plewa; Werner Bauer; Thomas Hanemann; Ansgar Waldbaur; Elisabeth Wilhelm; Christiane Neumann; Bastian E. Rapp

In academia the rapid and flexible creation of microfluidic chips is of great importance for microfluidic research. Besides polymers glass is a very important material especially when high chemical and temperature resistance are required. However, glass structuring is a very hazardous process which is not accessible to most members of the microfluidic community. We therefore sought a new method for the rapid and simple creation of transparent microfluidic glass chips by structuring and sintering amorphous silica suspensions. The whole process from a digital mask layout to a microstructured glass sheet can be done within two days. In this paper we show the applicability of this process to fabricate capillary driven microfluidic systems.


SPIE BIOS - Microfluidics, BioMEMS, and Medical Microsystems XVI, San Francisco, United States, 27 January–1 February 2018. Ed.: B. Gray | 2018

Suspended liquid subtractive lithography: printing three dimensional channels directly into uncured PDMS

Dorothea Helmer; Achim Voigt; Bastian E. Rapp; Frederik Kotz; Tobias M. Nargang; Stefan F. Wagner; Nico Keller; Kai Sachsenheimer

Polydimethylsiloxane (PDMS) is one of the most widely used polymers for the generation of microfluidic chips. The standard procedures of soft lithography require the formation of a new master structure for every design which is timeconsuming and expensive. All channel generated by soft lithography need to be consecutively sealed by bonding which is a process that can proof to be hard to control. Channel cross-sections are largely restricted to squares or flat-topped designs and the generation of truly three-dimensional designs is not straightforward. Here we present Suspended Liquid Subtractive Lithography (SLSL) a method for generating microfluidic channels of nearly arbitrary three-dimensional structures in PDMS that do not require master formation or bonding and give circular channel cross sections which are especially interesting for mimicking in vivo environments. In SLSL, an immiscible liquid is introduced into the uncured PDMS by a capillary mounted on a 3D printer head. The liquid forms continuous “threads” inside the matrix thus creating void suspended channel structures.


Microfluidics, BioMEMS, and Medical Microsystems XVI, San Francisco, CA, January 27 - February 1, 2018 | 2018

Additive manufacturing of microfluidic glass chips

Frederik Kotz; Dorothea Helmer; Bastian E. Rapp

Additive manufacturing has gained great interest in the microfluidic community due to the numerous channel designs which can be tested in the early phases of a lab-on-a-chip device development. High resolution additive manufacturing like microstereolithography is largely associated with polymers. Polymers are at a disadvantage compared to other materials due to their softness and low chemical resistance. Whenever high chemical and thermal resistance combined with high optical transparency is needed, glasses become the material of choice. However, glasses are difficult to structure at the microscale requiring hazardous chemicals for etching processes. In this work we present additive manufacturing and high resolution patterning of microfluidic chips in transparent fused silica glass using stereolithography and microlithography. We print an amorphous silica nanocomposite at room temperature using benchtop stereolithography printers and a custom built microlithography system based on a digital mirror device. Using microlithography we printed structures with tens of micron resolution. The printed part is then converted to a transparent fused silica glass using thermal debinding and sintering. Printing of a microfluidic chip can be done within 30 minutes. The heat treatment can be done within two days.

Collaboration


Dive into the Frederik Kotz's collaboration.

Top Co-Authors

Avatar

Bastian E. Rapp

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dorothea Helmer

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nico Keller

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tobias M. Nargang

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kai Sachsenheimer

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christiane Richter

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Werner Bauer

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Greiner

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dieter Schild

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karl Arnold

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge