Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederik Maes is active.

Publication


Featured researches published by Frederik Maes.


IEEE Transactions on Medical Imaging | 1997

Multimodality image registration by maximization of mutual information

Frederik Maes; André Collignon; Dirk Vandermeulen; Guy Marchal; Paul Suetens

A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.


IEEE Transactions on Medical Imaging | 1999

Automated model-based tissue classification of MR images of the brain

K. Van Leemput; Frederik Maes; Dirk Vandermeulen; Paul Suetens

Describes a fully automated method for model-based tissue classification of magnetic resonance (MR) images of the brain. The method interleaves classification with estimation of the model parameters, improving the classification at each iteration. The algorithm is able to segment single- and multi-spectral MR images, corrects for MR signal inhomogeneities, and incorporates contextual information by means of Markov random Fields (MRFs). A digital brain atlas containing prior expectations about the spatial location of tissue classes is used to initialize the algorithm. This makes the method fully automated and therefore it provides objective and reproducible segmentations. The authors have validated the technique on simulated as well as on real MR images of the brain.


Medical Image Analysis | 1999

Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information

Frederik Maes; Dirk Vandermeulen; Paul Suetens

Maximization of mutual information of voxel intensities has been demonstrated to be a very powerful criterion for three-dimensional medical image registration, allowing robust and accurate fully automated affine registration of multimodal images in a variety of applications, without the need for segmentation or other preprocessing of the images. In this paper, we investigate the performance of various optimization methods and multiresolution strategies for maximization of mutual information, aiming at increasing registration speed when matching large high-resolution images. We show that mutual information is a continuous function of the affine registration parameters when appropriate interpolation is used and we derive analytic expressions of its derivatives that allow numerically exact evaluation of its gradient. Various multiresolution gradient- and non-gradient-based optimization strategies, such as Powell, simplex, steepest-descent, conjugate-gradient, quasi-Newton and Levenberg-Marquardt methods, are evaluated for registration of computed tomography (CT) and magnetic resonance images of the brain. Speed-ups of a factor of 3 on average compared to Powells method at full resolution are achieved with similar precision and without a loss of robustness with the simplex, conjugate-gradient and Levenberg-Marquardt method using a two-level multiresolution scheme. Large data sets such as 256(2) x 128 MR and 512(2) x 48 CT images can be registered with subvoxel precision in <5 min CPU time on current workstations.


Proceedings of the IEEE | 2003

Medical image registration using mutual information

Frederik Maes; Dirk Vandermeulen; Paul Suetens

Analysis of multispectral or multitemporal images requires proper geometric alignment of the images to compare corresponding regions in each image volume. Retrospective three-dimensional alignment or registration of multimodal medical images based on features intrinsic to the image data itself is complicated by their different photometric properties, by the complexity of the anatomical objects in the scene and by the large variety of clinical applications in which registration is involved. While the accuracy of registration approaches based on matching of anatomical landmarks or object surfaces suffers from segmentation errors, voxel-based approaches consider all voxels in the image without the need for segmentation. The recent introduction of the criterion of maximization of mutual information, a basic concept from information theory, has proven to be a breakthrough in the field. While solutions for intrapatient affine registration based on this concept are already commercially available, current research in the field focuses on interpatient nonrigid matching.


IEEE Transactions on Medical Imaging | 2003

A unifying framework for partial volume segmentation of brain MR images

K. Van Leemput; Frederik Maes; Dirk Vandermeulen; Paul Suetens

Accurate brain tissue segmentation by intensity-based voxel classification of magnetic resonance (MR) images is complicated by partial volume (PV) voxels that contain a mixture of two or more tissue types. In this paper, we present a statistical framework for PV segmentation that encompasses and extends existing techniques. We start from a commonly used parametric statistical image model in which each voxel belongs to one single tissue type, and introduce an additional downsampling step that causes partial voluming along the borders between tissues. An expectation-maximization approach is used to simultaneously estimate the parameters of the resulting model and perform a PV classification. We present results on well-chosen simulated images and on real MR images of the brain, and demonstrate that the use of appropriate spatial prior knowledge not only improves the classifications, but is often indispensable for robust parameter estimation as well. We conclude that general robust PV segmentation of MR brain images requires statistical models that describe the spatial distribution of brain tissues more accurately than currently available models.


Medical Image Analysis | 2003

A viscous fluid model for multimodal non-rigid image registration using mutual information.

Emiliano D'Agostino; Frederik Maes; Dirk Vandermeulen; Paul Suetens

We propose a multimodal free-form registration algorithm based on maximization of mutual information. The warped image is modeled as a viscous fluid that deforms under the influence of forces derived from the gradient of the mutual information registration criterion. Parzen windowing is used to estimate the joint intensity probability of the images to be matched. The method is evaluated for non-rigid inter-subject registration of MR brain images. The accuracy of the method is verified using simulated multi-modal MR images with known ground truth deformation. The results show that the root mean square difference between the recovered and the ground truth deformation is smaller than 1 voxel. We illustrate the application of the method for atlas-based brain tissue segmentation in MR images in case of gross morphological differences between atlas and patient images.


Journal of School Psychology | 2008

Classroom problem behavior and teacher-child relationships in kindergarten: the moderating role of classroom climate.

Evelien Buyse; Karine Verschueren; Sarah Doumen; Jan Van Damme; Frederik Maes

Young children with problem behavior in the classroom are at risk for developing more conflictual and less close relationships with their teachers. Two studies in kindergarten (N=3798; N=237) shed light on some aspects of classroom climate that can moderate this risk for relational problems. Results showed problematic classroom compositions, in terms of high average levels of internalizing or externalizing behavior, to exacerbate the risk for teachers to form more conflictual relationships with children showing externalizing behavior. Additionally, observed emotional support of teachers was found to be protective for the relational functioning of children at risk due to maladjusted behavior. Specifically, with emotionally supportive teachers, children who expose internalizing or externalizing behavior are no longer at risk for developing less close or more conflictual relationships with their teachers respectively. Practical implications and limitations of the studies are reported and suggestions are made for future research.


International Journal of Radiation Oncology Biology Physics | 1999

The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer.

Marc Debois; Raymond Oyen; Frederik Maes; G. Verswijvel; Giovanna Gatti; Hilde Bosmans; Michel Feron; Erwin Bellon; Gerald Kutcher; Hein Van Poppel; Luc Vanuytsel

PURPOSE To investigate whether the use of transaxial and coronal MR imaging improves the ability to localize the apex of the prostate and the anterior part of the rectum compared to the use of transaxial CT alone, and whether the incorporation of MR could improve the coverage of the prostate by the radiotherapy field and change the volume of rectum irradiated. METHODS AND MATERIALS Ten consecutive patients with localized prostate carcinoma underwent a CT and an axial and coronal MR scan in treatment position. The CT and MR images were mathematically aligned, and three observers were asked to contour independently the prostate and the rectum on CT and on MR. The interobserver variability of the prostatic apex location and of the delineation of the anterior rectal wall were assessed for each image modality. A dosimetry study was performed to evaluate the dose to the rectum when MR was used in addition to CT to localize the pelvic organs. RESULTS The interobserver variation of the prostatic apex location was largest on CT ranging from 0.54 to 1.07 cm, and smallest on coronal MR ranging from 0.17 to 0.25 cm. The interobserver variation of the delineation of the anterior rectum on MR was small and constant along the whole length of the prostate (0.09+/-0.02 cm), while for CT it was comparable to that for the MR delineation at the base of the prostate, but it increased gradually towards the apex, where the variation reached 0.39 cm. The volume of MR rectum receiving more than 80% of the prescribed dose was on average reduced by 23.8+/-11.2% from the CT to the MR treatment plan. CONCLUSION It can be concluded that the additional use of axial and coronal MR scans, in designing the treatment plan for localized prostate carcinoma, improves substantially the localization accuracy of the prostatic apex and the anterior aspect of the rectum, resulting in a better coverage of the prostate and a potential to reduce the volume of the rectum irradiated to a high dose.


IEEE Transactions on Medical Imaging | 2010

Nonrigid Image Registration Using Conditional Mutual Information

Dirk Loeckx; Pieter Slagmolen; Frederik Maes; Dirk Vandermeulen; Paul Suetens

Maximization of mutual information (MMI) is a popular similarity measure for medical image registration. Although its accuracy and robustness has been demonstrated for rigid body image registration, extending MMI to nonrigid image registration is not trivial and an active field of research. We propose conditional mutual information (cMI) as a new similarity measure for nonrigid image registration. cMI starts from a 3-D joint histogram incorporating, besides the intensity dimensions, also a spatial dimension expressing the location of the joint intensity pair. cMI is calculated as the expected value of the cMI between the image intensities given the spatial distribution. The cMI measure was incorporated in a tensor-product B-spline nonrigid registration method, using either a Parzen window or generalized partial volume kernel for histogram construction. cMI was compared to the classical global mutual information (gMI) approach in theoretical, phantom, and clinical settings. We show that cMI significantly outperforms gMI for all applications.


Circulation Research | 2008

Remodeling of T-Tubules and Reduced Synchrony of Ca2+ Release in Myocytes From Chronically Ischemic Myocardium

Frank R. Heinzel; Virginie Bito; Liesbeth Biesmans; Ming Wu; Elke Detre; Frederik von Wegner; Piet Claus; Steven Dymarkowski; Frederik Maes; Jan Bogaert; Frank Rademakers; Jan D’hooge; Karin R. Sipido

In ventricular cardiac myocytes, T-tubule density is an important determinant of the synchrony of sarcoplasmic reticulum (SR) Ca2+ release and could be involved in the reduced SR Ca2+ release in ischemic cardiomyopathy. We therefore investigated T-tubule density and properties of SR Ca2+ release in pigs, 6 weeks after inducing severe stenosis of the circumflex coronary artery (91±3%, N=13) with myocardial infarction (8.8±2.0% of total left ventricular mass). Severe dysfunction in the infarct and adjacent myocardium was documented by magnetic resonance and Doppler myocardial velocity imaging. Myocytes isolated from the adjacent myocardium were compared with myocytes from the same region in weight-matched control pigs. T-tubule density quantified from the di-8-ANEPPS (di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate) sarcolemmal staining was decreased by 27±7% (P<0.05). Synchrony of SR Ca2+ release (confocal line scan images during whole-cell voltage clamp) was reduced in myocardium myocytes. Delayed release (ie, half-maximal [Ca2+]i occurring later than 20 ms) occurred at 35.5±6.4% of the scan line in myocardial infarction versus 22.7±2.5% in control pigs (P<0.05), prolonging the time to peak of the line-averaged [Ca2+]i transient (121±9 versus 102±5 ms in control pigs, P<0.05). Delayed release colocalized with regions of T-tubule rarefaction and could not be suppressed by activation of protein kinase A. The whole-cell averaged [Ca2+]i transient amplitude was reduced, whereas L-type Ca2+ current density was unchanged and SR content was increased, indicating a reduction in the gain of Ca2+-induced Ca2+ release. In conclusion, reduced T-tubule density during ischemic remodeling is associated with reduced synchrony of Ca2+ release and reduced efficiency of coupling Ca2+ influx to Ca2+ release.

Collaboration


Dive into the Frederik Maes's collaboration.

Top Co-Authors

Avatar

Paul Suetens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Dirk Vandermeulen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Dirk Loeckx

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Bogaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guy Marchal

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Karin Haustermans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joris Ector

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stijn De Buck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stefan Sunaert

Catholic University of Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge