Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederik Ronsse is active.

Publication


Featured researches published by Frederik Ronsse.


Gcb Bioenergy | 2013

Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions

Frederik Ronsse; Sven van Hecke; Dane Dickinson; Wolter Prins

Biochar was produced by fixed‐bed slow pyrolysis from various feedstock biomasses under a range of process conditions. Feedstocks used were pine wood, wheat straw, green waste and dried algae. Process conditions varied were the highest treatment temperature (HTT) and residence time. The produced chars were characterized by proximate analysis, CHN‐elemental analysis, pH in solution, bomb calorimetry for higher heating value, N2 adsorption for BET surface area and two biological degradation assays (oxygen demand, carbon mineralization in soil). In proximate analysis, it was found that the fixed carbon content (expressed in wt% of dry and ash‐free biochar) in the biochar samples strongly depended on the intensity of the thermal treatment (i.e. higher temperatures and longer residence times in the pyrolysis process). The actual yield in fixed carbon (i.e. the biochar fixed carbon content expressed as wt% of the dry and ash‐free original feedstock biomass weight) was practically insensitive to the highest treatment temperature or residence time. The pH in solution, higher heating value and BET surface positively correlated with pyrolysis temperature. Finally, soil incubation tests showed that the addition of biochar to the soil initially marginally reduced the C‐mineralization rate compared against the control soil samples, for which a possible explanation could be that the soil microbial community needs to adapt to the new conditions. This effect was more pronounced when adding chars with high fixed carbon content (resulting from more severe thermal treatment), as chars with low fixed carbon content (produced through mild thermal treatment) had a larger amount of volatile, more easily biodegradable, carbon compounds.


Frontiers in Plant Science | 2013

Towards a carbon-negative sustainable bio-based economy

Bartel Vanholme; Tom Desmet; Frederik Ronsse; Korneel Rabaey; Frank Van Breusegem; Marjan De Mey; Wim Soetaert; Wout Boerjan

The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.


Bioresource Technology | 2013

Influence of strain-specific parameters on hydrothermal liquefaction of microalgae.

Diego López Barreiro; Carlos Zamalloa; Nico Boon; Wim Vyverman; Frederik Ronsse; Wim Brilman; Wolter Prins

Algae are an interesting feedstock for producing biofuel via hydrothermal liquefaction (HTL), due to their high water content. In this study, algae slurries (5-7 wt% daf) from different species were liquefied at 250 and 375 °C in batch autoclaves during 5 min. The aim was to analyze the influence of strain-specific parameters (cell structure, biochemical composition and growth environment) on the HTL process. Results show big variations in the biocrude oil yield within species at 250 °C (from 17.6 to 44.8 wt%). At 375 °C, these differences become less significant (from 45.6 to 58.1 wt%). An appropriate characterization of feedstock appeared to be critical to interpret the results. If a high conversion of microalgae-to-biocrude is pursued, near critical conditions are required, with Scenedesmus almeriensis (freshwater) and Nannochloropsis gaditana (marine) leading to the biocrude oils with lower nitrogen content from each growth environment.


Gcb Bioenergy | 2015

Cost‐benefit analysis of using biochar to improve cereals agriculture

Dane Dickinson; Ludovico Balduccio; Jeroen Buysse; Frederik Ronsse; Guido Van Huylenbroeck; Wolter Prins

Biochar has received considerable scientific attention in the past decade as a possible method for carbon storage and increasing agricultural yields. Despite this promise, however, economic assessments of biochar are yet to definitively establish the value of the technology, primarily due to discrepancy between observed short‐term agronomic benefits and expectations of biochar as a lasting soil improver. This study investigated the economic value of biochar as an agricultural technology for long‐term improvement of arable farming. From presently available field trial data, the costs and benefits of using biochar technology to enhance cereals agriculture were evaluated in two generalized geo‐economic agricultural scenarios: North‐Western Europe (NWE) and Sub‐Saharan Africa (SSA). Cost models were developed to estimate the total cost of biochar from initial biomass feedstock acquisition to final soil application for each agricultural setting. Benefits of biochar application were estimated by statistical meta‐analysis of crop yield data from published biochar field trials to find the increase in cereal grain yield attributable to biochar application for both NWE (+0.07 to +0.28 t ha−1 yr−1) and SSA (+0.18 to +1.00 t ha−1 yr−1). The grain yield improvement from a one‐time biochar application was assumed to persist without decay for an independently varying time period, and the increase in grain production then monetised using projected future commodity prices. The Net Present Value (NPV) of applying biochar was then calculated by setting present total costs against present total benefits as a function of biochar performance longevity. Biochar application was found to carry a positive NPV for cereal cropping in SSA in several scenarios where the duration of the biochar yield effect was assumed to extend 30 years into the future. Conversely, NWE biochar scenarios were all found to have negative NPVs even when the benefits time span was indefinitely stretched.


Scientific Reports | 2016

The electron donating capacity of biochar is dramatically underestimated

Antonin Prévoteau; Frederik Ronsse; Inés Cid; Pascal Boeckx; Korneel Rabaey

Biochars have gathered considerable interest for agronomic and engineering applications. In addition to their high sorption ability, biochars have been shown to accept or donate considerable amounts of electrons to/from their environment via abiotic or microbial processes. Here, we measured the electron accepting (EAC) and electron donating (EDC) capacities of wood-based biochars pyrolyzed at three different highest treatment temperatures (HTTs: 400, 500, 600 °C) via hydrodynamic electrochemical techniques using a rotating disc electrode. EACs and EDCs varied with HTT in accordance with a previous report with a maximal EAC at 500 °C (0.4 mmol(e−).gchar−1) and a large decrease of EDC with HTT. However, while we monitored similar EAC values than in the preceding study, we show that the EDCs have been underestimated by at least 1 order of magnitude, up to 7 mmol(e−).gchar−1 for a HTT of 400 °C. We attribute this existing underestimation to unnoticed slow kinetics of electron transfer from biochars to the dissolved redox mediators used in the monitoring. The EDC of other soil organic constituents such as humic substances may also have been underestimated. These results imply that the redox properties of biochars may have a much bigger impact on soil biogeochemical processes than previously conjectured.


Drying Technology | 2014

Coupling CFD and Diffusion Models for Analyzing the Convective Drying Behavior of a Single Rice Kernel

Ramadan ElGamal; Frederik Ronsse; Sherif M. Radwan; Jan Pieters

The drying behavior of a single rice kernel subjected to convective drying was analyzed numerically by solving heat and moisture transfer equations using a coupled computational fluid dynamics (CFD) and diffusion model. The transfer coefficients were computed simultaneously with the external flow field and the internal diffusive field of the grain. The model was validated using results of a thin-layer drying experiments from the literature. The effects of velocity and temperature of the drying air on the rice kernel were analyzed. It was found that the air temperature was the major variable that affected the drying rate of the rice kernel. The initial drying rates (in first 20 min) were 7, 12, and 19% per hour at inlet air temperatures of 30, 45, and 60 ∘ C, respectively. Important temperature gradients within the grain existed only in the first few minutes of the drying process. The moisture content gradients reached a maximum value of 11.7% (db) mm −1 at approximately 45 min along the short axis in the thickness direction. The variation in the inlet air velocity showed a minor effect on the drying rate of the rice kernel. The heat and mass transfer coefficients varied from 16.57 to 203.46 W·m −2·K −1 and from 0.0160 to 0.1959 m·s −1, respectively. The importance of the computation of the transfer coefficients with the heat and mass transfer model is demonstrated.


Drying Technology | 2007

Numerical Spray Model of the Fluidized Bed Coating Process

Frederik Ronsse; Jan Pieters; Koen Dewettinck

In this study, a new model for the batch top-spray fluidized bed coating process is presented. The model is based on the one-dimensional (axial) discretization of the bed volume into different control volumes, in which the dynamic heat and mass balances for air, water vapor, droplets, core particles, and coating material were established. The coupling of the droplet phases mass and heat transfer terms with the gas and solid phases was established by means of a droplet submodel in which droplet trajectories were individually simulated. The model calculation method combines a Monte Carlo technique for the simulation of the particle exchange with the first-order Eulers method for solving the heat and mass balances, enabling the prediction of both the dynamic coating mass distribution and the one-dimensional (axial) thermodynamic behavior of the fluidized bed during batch operation. The simulation results were validated using experimental two-dimensional spatial air temperature and air humidity distributions, which were measured in a fluidized bed pilot reactor using a scanning probe. Sensitivity analysis was carried out to study the effect of controllable process variables, such as fluidization air and atomization air properties, as well as the properties of the spraying liquid upon the simulated dynamic temperature and humidity distributions. Also, the effects of relevant process variables on growth rate uniformity and process yield were studied. Based on these sensitivity studies it was concluded that nozzle parameters, such as air pressure and positioning with respect to the bed, are as important as the fluidization air properties (humidity, temperature, and flow rate) for the coating growth rate uniformity and process yield.


Bioresource Technology | 2016

Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds.

Hilal Ezgi Toraman; Ruben Vanholme; Eleonora Borén; Yumi Vanwonterghem; Marko R. Djokic; Güray Yildiz; Frederik Ronsse; Wolter Prins; Wout Boerjan; Kevin Van Geem; Guy Marin

Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil.


Journal of Chromatography A | 2016

Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer.

Hilal Ezgi Toraman; Kristina Franz; Frederik Ronsse; Kevin Van Geem; Guy Marin

Insight in the composition of the algae derived bio-oils is crucial for the development of efficient conversion processes and better upgrading strategies for microalgae. Comprehensive two-dimensional gas chromatography (GC×GC) coupled to nitrogen chemiluminescence detector (NCD) and time-of-flight mass spectrometer (TOF-MS) allows to obtain the detailed quantitative composition of the nitrogen containing compounds in the aqueous and the organic fraction of fast pyrolysis bio-oils from microalgae. Normal phase (apolar×mid-polar) and reverse phase column (polar×apolar) combination are investigated to optimize the separation of the detected nitrogen containing compounds. The reverse phase column combination gives the most detailed information in terms of the nitrogen containing compounds. The combined information from the GC×GC-TOF-MS (qualitative) and GC×GC-NCD (quantitative) with the use of a well-chosen internal standard, i.e. caprolactam, enables the identification and quantification of nitrogen containing compounds belonging to 13 different classes: amines, imidazoles, amides, imides, nitriles, pyrazines, pyridines, indoles, pyrazoles, pyrimidines, quinolines, pyrimidinediones and other nitrogen containing compounds which were not assigned to a specific class. The aqueous fraction mostly consists of amines (4.0wt%) and imidazoles (2.8wt%) corresponding to approximately 80wt% of the total identified nitrogen containing compounds. On the other hand, the organic fraction shows a more diverse distribution of nitrogen containing compounds with the majority of the compounds quantified as amides (3.0wt%), indoles (2.0wt%), amines (1.7wt%) and imides (1.3wt%) corresponding to approximately 65wt% of the total identified nitrogen containing compounds.


Bioresource Technology | 2016

Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass

R. Van Poucke; Robert Nachenius; K.E. Agbo; Frank Hensgen; Lutz Bühle; M. Wachendorf; Yong Sik Ok; Filip Tack; Wolter Prins; Frederik Ronsse; Erik Meers

The aim of this research was to establish whether hydrothermal conditioning and subsequent thermochemical processing via batch torrefaction or slow pyrolysis may improve the fuel quality of grass residues. A comparison in terms of fuel quality was made of the direct thermochemical processing of the feedstock versus hydrothermal conditioning as a pretreatment prior to thermochemical processing. Hydrothermal conditioning reduced ash content, and particularly nitrogen, potassium and chlorine contents in the biomass. The removal of volatile organic matter associated with thermochemical processes can increase the HHV to levels of volatile bituminous coal. However, slow pyrolysis only increased the HHV of biomass provided a low ash content (<6%) feedstock was used. In conclusion, hydrothermal conditioning can have a highly positive influence on the efficiency of thermochemical processes for upgrading low-value (high-ash) biomass to a higher quality fuel.

Collaboration


Dive into the Frederik Ronsse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge