Frederik Van den Broeck
Institute of Tropical Medicine Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederik Van den Broeck.
eLife | 2016
Hideo Imamura; Tim Downing; Frederik Van den Broeck; Mandy Sanders; Suman Rijal; Shyam Sundar; An Mannaert; Manu Vanaerschot; Maya Berg; Géraldine De Muylder; Franck Dumetz; Bart Cuypers; Ilse Maes; Malgorzata Domagalska; Saskia Decuypere; Keshav Rai; Surendra Uranw; Narayan Raj Bhattarai; Basudha Khanal; Vijay Kumar Prajapati; Smriti Sharma; Olivia Stark; Gabriele Schönian; Harry P. de Koning; Luca Settimo; Benoit Vanhollebeke; Syamal Roy; Bart Ostyn; Marleen Boelaert; Louis Maes
Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment. DOI: http://dx.doi.org/10.7554/eLife.12613.001
Fems Microbiology Reviews | 2014
Manu Vanaerschot; Silvie Huijben; Frederik Van den Broeck; Jean-Claude Dujardin
Drug-resistant pathogens emerge faster than new drugs come out of drug discovery pipelines. Current and future drug options should therefore be better protected, requiring a clear understanding of the factors that contribute to the natural history of drug resistance. Although many of these factors are relatively well understood for most bacteria, this proves to be more complex for vectorborne parasites. In this review, we discuss considering three key models (Plasmodium, Leishmania and Schistosoma) how drug resistance can emerge, spread and persist. We demonstrate a multiplicity of scenarios, clearly resulting from the biological diversity of the different organisms, but also from the different modes of action of the drugs used, the specific within- and between-host ecology of the parasites, and environmental factors that may have direct or indirect effects. We conclude that integrated control of drug-resistant vectorborne parasites is not dependent upon chemotherapy only, but also requires a better insight into the ecology of these parasites and how their transmission can be impaired.
PLOS Neglected Tropical Diseases | 2013
Lynn Meurs; Moustapha Mbow; Nele Boon; Frederik Van den Broeck; Kim Vereecken; Tandakha Ndiaye Dieye; Emmanuel Abatih; Tine Huyse; Souleymane Mboup; Katja Polman
Background Schistosoma mansoni and S. haematobium are co-endemic in many areas in Africa. Yet, little is known about the micro-geographical distribution of these two infections or associated disease within such foci. Such knowledge could give important insights into the drivers of infection and disease and as such better tailor schistosomiasis control and elimination efforts. Methodology In a co-endemic farming community in northern Senegal (346 children (0–19 y) and 253 adults (20–85 y); n = 599 in total), we studied the spatial distribution of S. mansoni and S. haematobium single and mixed infections (by microscopy), S. mansoni-specific hepatic fibrosis, S. haematobium-specific urinary tract morbidity (by ultrasound) and water contact behavior (by questionnaire). The Kulldorffs scan statistic was used to detect spatial clusters of infection and morbidity, adjusted for the spatial distribution of gender and age. Principal Findings Schistosoma mansoni and S. haematobium infection densities clustered in different sections of the community (p = 0.002 and p = 0.023, respectively), possibly related to heterogeneities in the use of different water contact sites. While the distribution of urinary tract morbidity was homogeneous, a strong geospatial cluster was found for severe hepatic fibrosis (p = 0.001). Particularly those people living adjacent to the most frequently used water contact site were more at risk for more advanced morbidity (RR = 6.3; p = 0.043). Conclusions/Significance Schistosoma infection and associated disease showed important micro-geographical heterogeneities with divergent patterns for S. mansoni and S. haematobium in this Senegalese community. Further in depth investigations are needed to confirm and explain our observations. The present study indicates that local geospatial patterns should be taken into account in both research and control of schistosomiasis. The observed extreme focality of schistosomiasis even at community level, suggests that current strategies may not suffice to move from morbidity control to elimination of schistosomiasis, and calls for less uniform measures at a finer scale.
Applied and Environmental Microbiology | 2013
Valérie De Waele; Frederik Van den Broeck; Tine Huyse; Guy McGrath; I.M. Higgins; Niko Speybroeck; Marco Berzano; Pat Raleigh; Grace Mulcahy; Thomas M. Murphy
ABSTRACT In total, 245 Cryptosporidium parvum specimens obtained from calves in 205 Irish herds between 2003 and 2005 were subtyped by sequencing the glycoprotein gene gp60 and performing multilocus analysis of seven markers. The transmission dynamics of C. parvum and the influence of temporal, spatial, parasitic, and host-related factors on the parasite (sub)populations were studied. The relationship of those factors to the risk of cryptosporidiosis was also investigated using results from 1,368 fecal specimens submitted to the veterinary laboratories for routine diagnosis during 2005. The prevalence was greatest in the northwest and midwest of the country and on farms that bought in calves. The panmixia (random mating) detected in the C. parvum population may relate to its high prevalence, the cattle density, and the frequent movement of cattle. However, local variations in these factors were reflected in the C. parvum subpopulations. This study demonstrated the importance of biosecurity in the control of bovine cryptosporidiosis (e.g., isolation and testing of calves before introduction into a herd). Furthermore, the zoonotic risk of C. parvum was confirmed, as most specimens possessed GP60 and MS1 subtypes previously described in humans.
Molecular Ecology | 2012
Luc Lens; Frederik Van den Broeck; Stefan Van Dongen; Filip Volckaert
Quantifying the contribution of the various processes that influence population genetic structure is important, but difficult. One of the reasons is that no single measure appropriately quantifies all aspects of genetic structure. An increasing number of studies is analysing population structure using the statistic D, which measures genetic differentiation, next to GST, which quantifies the standardized variance in allele frequencies among populations. Few studies have evaluated which statistic is most appropriate in particular situations. In this study, we evaluated which index is more suitable in quantifying postglacial divergence between three‐spined stickleback (Gasterosteus aculeatus) populations from Western Europe. Population structure on this short timescale (10 000 generations) is probably shaped by colonization history, followed by migration and drift. Using microsatellite markers and anticipating that D and GST might have different capacities to reveal these processes, we evaluated population structure at two levels: (i) between lowland and upland populations, aiming to infer historical processes; and (ii) among upland populations, aiming to quantify contemporary processes. In the first case, only D revealed clear clusters of populations, putatively indicative of population ancestry. In the second case, only GST was indicative for the balance between migration and drift. Simulations of colonization and subsequent divergence in a hierarchical stepping stone model confirmed this discrepancy, which becomes particularly strong for markers with moderate to high mutation rates. We conclude that on short timescales, and across strong clines in population size and connectivity, D is useful to infer colonization history, whereas GST is sensitive to more recent demographic events.
Infection, Genetics and Evolution | 2011
Vanessa Adaui; Ilse Maes; Tine Huyse; Frederik Van den Broeck; Michael Talledo; Katrin Kuhls; Simonne De Doncker; Louis Maes; Alejandro Llanos-Cuentas; Gabriele Schönian; Jorge Arevalo; Jean-Claude Dujardin
In order to understand the epidemiological dynamics of antimonial (Sb(V)) resistance in zoonotic tegumentary leishmaniasis and its link with treatment outcome, we analyzed the population structure of 24 Peruvian Leishmania braziliensis clinical isolates with known in vitro antimony susceptibility and clinical phenotype by multilocus microsatellite typing (14 microsatellite loci). The genetic variability in the Peruvian isolates was high and the multilocus genotypes were strongly differentiated from each other. No correlation was found between the genotypes and in vitro drug susceptibility or clinical treatment outcome. The finding of a polyphyletic pattern among the Sb(V)-resistant L. braziliensis might be explained by (i) independent events of drug resistance emergence, (ii) sexual recombination and/or (iii) other phenomena mimicking recombination signals. Interestingly, the polyphyletic pattern observed here is very similar to the one we observed in the anthroponotic Leishmania donovani (Laurent et al., 2007), hereby questioning the role of transmission and/or chemotherapeutic drug pressure in the observed population structure.
Molecular Ecology | 2017
Eliane Tihon; Hideo Imamura; Jean-Claude Dujardin; Jan Van Den Abbeele; Frederik Van den Broeck
Hybrid populations and introgressive hybridization remain poorly documented in pathogenic micro‐organisms, as such that genetic exchange has been argued to play a minor role in their evolution. Recent work demonstrated the existence of hybrid microsatellite profiles in Trypanosoma congolense, a parasitic protozoan with detrimental effects on livestock productivity in sub‐Saharan Africa. Here, we present the first population genomic study of T. congolense, revealing a remarkable number of single nucleotide polymorphisms (SNPs), small insertions/deletions (indels) and gene deletions among 56 parasite genomes from ten African countries. One group of parasites from Zambia was particularly diverse, displaying a substantial number of heterozygous SNP and indel sites compared to T. congolense parasites from the nine other sub‐Saharan countries. Genomewide 5‐kb phylogenetic analyses based on phased SNP data revealed that these parasites were the product of hybridization between phylogenetically distinct T. congolense lineages. Other parasites within the same region in Zambia presented a mosaic of haplotypic ancestry and genetic variability, indicating that hybrid parasites persisted and recombined beyond the initial hybridization event. Our observations challenge traditional views of trypanosome population biology and encourage future research on the role of hybridization in spreading genes for drug resistance, pathogenicity and virulence.
PLOS Neglected Tropical Diseases | 2015
Frederik Van den Broeck; Gregory E. Maes; Maarten Larmuseau; David Rollinson; Ibrahima Sy; Djibril S. Faye; Filip Volckaert; Katja Polman; Tine Huyse
Background Anthropogenic environmental changes may lead to ecosystem destabilization and the unintentional colonization of new habitats by parasite populations. A remarkable example is the outbreak of intestinal schistosomiasis in Northwest Senegal following the construction of two dams in the ‘80s. While many studies have investigated the epidemiological, immunological and geographical patterns of Schistosoma mansoni infections in this region, little is known about its colonization history. Methodology/Principal Findings Parasites were collected at several time points after the disease outbreak and genotyped using a 420 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) and nine nuclear DNA microsatellite markers. Phylogeographic and population genetic analyses revealed the presence of (i) many genetically different haplotypes at the non-recombining mitochondrial marker and (ii) one homogenous S. mansoni genetic group at the recombining microsatellite markers. These results suggest that the S. mansoni population in Northwest Senegal was triggered by intraspecific hybridization (i.e. admixture) between parasites that were introduced from different regions. This would comply with the extensive immigration of infected seasonal agricultural workers from neighboring regions in Senegal, Mauritania and Mali. The spatial and temporal stability of the established S. mansoni population suggests a swift local adaptation of the parasite to the local intermediate snail host Biomphalaria pfeifferi at the onset of the epidemic. Conclusions/Significance Our results show that S. mansoni parasites are very successful in colonizing new areas without significant loss of genetic diversity. Maintaining high levels of diversity guarantees the adaptive potential of these parasites to cope with selective pressures such as drug treatment, which might complicate efforts to control the disease.
Genome Biology and Evolution | 2017
Bart Cuypers; Frederik Van den Broeck; Nick Van Reet; Conor J. Meehan; Julien Cauchard; Jonathan M. Wilkes; Filip Claes; Bruno Goddeeris; Hadush Birhanu; Jean-Claude Dujardin; Kris Laukens; Philippe Büscher; Stijn Deborggraeve
Abstract Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission.
Mbio | 2016
Bart Cuypers; Laurence Lecordier; Conor J. Meehan; Frederik Van den Broeck; Hideo Imamura; Philippe Büscher; Jean-Claude Dujardin; Kris Laukens; Achim Schnaufer; Caroline E. Dewar; Michael D. Lewis; Oliver Balmer; Thomas Azurago; Sardick Kyei-Faried; Sally-Ann Ohene; Boateng Duah; Prince Homiah; Ebenezer Kofi Mensah; Francis Anleah; José R. Franco; Etienne Pays; Stijn Deborggraeve
ABSTRACT African trypanosomes, except Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause human African trypanosomiasis, are lysed by the human serum protein apolipoprotein L1 (ApoL1). These two subspecies can resist human ApoL1 because they express the serum resistance proteins T. b. gambiense glycoprotein (TgsGP) and serum resistance-associated protein (SRA), respectively. Whereas in T. b. rhodesiense, SRA is necessary and sufficient to inhibit ApoL1, in T. b. gambiense, TgsGP cannot protect against high ApoL1 uptake, so different additional mechanisms contribute to limit this uptake. Here we report a complex interplay between trypanosomes and an ApoL1 variant, revealing important insights into innate human immunity against these parasites. Using whole-genome sequencing, we characterized an atypical T. b. gambiense infection in a patient in Ghana. We show that the infecting trypanosome has diverged from the classical T. b. gambiense strains and lacks the TgsGP defense mechanism against human serum. By sequencing the ApoL1 gene of the patient and subsequent in vitro mutagenesis experiments, we demonstrate that a homozygous missense substitution (N264K) in the membrane-addressing domain of this ApoL1 variant knocks down the trypanolytic activity, allowing the trypanosome to avoid ApoL1-mediated immunity. IMPORTANCE Most African trypanosomes are lysed by the ApoL1 protein in human serum. Only the subspecies Trypanosoma b. gambiense and T. b. rhodesiense can resist lysis by ApoL1 because they express specific serum resistance proteins. We here report a complex interplay between trypanosomes and an ApoL1 variant characterized by a homozygous missense substitution (N264K) in the domain that we hypothesize interacts with the endolysosomal membranes of trypanosomes. The N264K substitution knocks down the lytic activity of ApoL1 against T. b. gambiense strains lacking the TgsGP defense mechanism and against T. b. rhodesiense if N264K is accompanied by additional substitutions in the SRA-interacting domain. Our data suggest that populations with high frequencies of the homozygous N264K ApoL1 variant may be at increased risk of contracting human African trypanosomiasis. Most African trypanosomes are lysed by the ApoL1 protein in human serum. Only the subspecies Trypanosoma b. gambiense and T. b. rhodesiense can resist lysis by ApoL1 because they express specific serum resistance proteins. We here report a complex interplay between trypanosomes and an ApoL1 variant characterized by a homozygous missense substitution (N264K) in the domain that we hypothesize interacts with the endolysosomal membranes of trypanosomes. The N264K substitution knocks down the lytic activity of ApoL1 against T. b. gambiense strains lacking the TgsGP defense mechanism and against T. b. rhodesiense if N264K is accompanied by additional substitutions in the SRA-interacting domain. Our data suggest that populations with high frequencies of the homozygous N264K ApoL1 variant may be at increased risk of contracting human African trypanosomiasis.