Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederik W. van Delft is active.

Publication


Featured researches published by Frederik W. van Delft.


Nature | 2011

Genetic variegation of clonal architecture and propagating cells in leukaemia

Kristina Anderson; Christoph Lutz; Frederik W. van Delft; Caroline M. Bateman; Yanping Guo; Susan M. Colman; Helena Kempski; Anthony V. Moorman; Ian Titley; John Swansbury; Lyndal Kearney; Tariq Enver; Mel Greaves

Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6–RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or ‘driver’ copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγnull mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer.


Nature Genetics | 2014

RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia

Elli Papaemmanuil; Inmaculada Rapado; Yilong Li; Nicola E Potter; David C. Wedge; Jose M. C. Tubio; Ludmil B. Alexandrov; Peter Van Loo; Susanna L. Cooke; John Marshall; Inigo Martincorena; Jonathan Hinton; Gunes Gundem; Frederik W. van Delft; Serena Nik-Zainal; David R. Jones; Manasa Ramakrishna; Ian Titley; Lucy Stebbings; Catherine Leroy; Andrew Menzies; John Gamble; Ben Robinson; Laura Mudie; Keiran Raine; Sarah O'Meara; Jon Teague; Adam Butler; Giovanni Cazzaniga; Andrea Biondi

The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL) cases, is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near breakpoints, incorporation of non-templated sequence at junctions, ∼30-fold enrichment at promoters and enhancers of genes actively transcribed in B cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single-cell tracking shows that this mechanism is active throughout leukemic evolution, with evidence of localized clustering and reiterated deletions. Integration of data on point mutations and rearrangements identifies ATF7IP and MGA as two new tumor-suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1–positive lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B cell differentiation.


Blood | 2011

Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia

Giovanni Cazzaniga; Frederik W. van Delft; Luca Lo Nigro; Anthony M. Ford; Joannah Score; Ilaria Iacobucci; Elena Mirabile; Mary Taj; Susan M. Colman; Andrea Biondi; Mel Greaves

The timing and developmental sequence of events for BCR-ABL1(+) acute lymphoblastic leukemia (ALL), usually associated with IKAROS (IKZF1) deletions, are unknown. We assessed the status of BCR-ABL1 and IKZF1 genes in 2 pairs of monozygotic twins, one pair concordant, the other discordant for Philadelphia chromosome positive (Ph(+)) ALL. The twin pair concordant for ALL shared identical BCR-ABL1 genomic sequence indicative of monoclonal, in utero origin. One twin had IKZF1 deletion and died after transplantation. The other twin had hyperdiploidy, no IKZF1 deletion, and is still in remission 8 years after transplantation. In the twin pair discordant for ALL, neonatal blood spots from both twins harbored the same clonotypic BCR-ABL1 sequence. Low level BCR-ABL1(+) cells were present in the healthy co-twin but lacked the IKZF1 deletion present in the other twins leukemic cells. The twin with ALL relapsed and died after transplantation. The co-twin remains healthy and leukemia free. These data show that in childhood Ph(+) ALL, BCR-ABL1 gene fusion can be a prenatal and possibly initiating genetic event. In the absence of additional, secondary changes, the leukemic clone remains clinically silent. IKZF1 is a secondary and probable postnatal mutation in these cases, and as a recurrent but alternative copy number change is associated with poor prognosis.


Journal of Clinical Investigation | 2009

A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug L-asparaginase.

Naina Patel; Shekhar Krishnan; Marc N. Offman; Marcin Król; Catherine X. Moss; Carly Leighton; Frederik W. van Delft; Mark Holland; Jizhong Liu; Seema Alexander; Clare Dempsey; Hany Ariffin; Monika Essink; Tim O B Eden; Colin Watts; Paul A. Bates; Vaskar Saha

l-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative. Here, we now report that 2 lysosomal cysteine proteases present in lymphoblasts are able to degrade l-asparaginase. Cathepsin B (CTSB), which is produced constitutively by normal and leukemic cells, degraded asparaginase produced by Escherichia coli (ASNase) and Erwinia chrysanthemi. Asparaginyl endopeptidase (AEP), which is overexpressed predominantly in high-risk subsets of ALL, specifically degraded ASNase. AEP thereby destroys ASNase activity and may also potentiate antigen processing, leading to allergic reactions. Using AEP-mediated cleavage sequences, we modeled the effects of the protease on ASNase and created a number of recombinant ASNase products. The N24 residue on the flexible active loop was identified as the primary AEP cleavage site. Sole modification at this site rendered ASNase resistant to AEP cleavage and suggested a key role for the flexible active loop in determining ASNase activity. We therefore propose what we believe to be a novel mechanism of drug resistance to ASNase. Our results may help to identify alternative therapeutic strategies with the potential of further improving outcome in childhood ALL.


Blood | 2011

Modeling the evolution of ETV6-RUNX1 –induced B-cell precursor acute lymphoblastic leukemia in mice

Louise van der Weyden; George Giotopoulos; Alistair G. Rust; Louise S. Matheson; Frederik W. van Delft; Jun Kong; Anne E. Corcoran; Mel Greaves; Charles G. Mullighan; Brian J. P. Huntly; David J. Adams

The t(12;21) translocation that generates the ETV6-RUNX1 (TEL-AML1) fusion gene, is the most common chromosomal rearrangement in childhood cancer and is exclusively associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The translocation arises in utero and is necessary but insufficient for the development of leukemia. Single-nucleotide polymorphism array analysis of ETV6-RUNX1 patient samples has identified multiple additional genetic alterations; however, the role of these lesions in leukemogenesis remains undetermined. Moreover, murine models of ETV6-RUNX1 ALL that faithfully recapitulate the human disease are lacking. To identify novel genes that cooperate with ETV6-RUNX1 in leukemogenesis, we generated a mouse model that uses the endogenous Etv6 locus to coexpress the Etv6-RUNX1 fusion and Sleeping Beauty transposase. An insertional mutagenesis screen was performed by intercrossing these mice with those carrying a Sleeping Beauty transposon array. In contrast to previous models, a substantial proportion (20%) of the offspring developed BCP-ALL. Isolation of the transposon insertion sites identified genes known to be associated with BCP-ALL, including Ebf1 and Epor, in addition to other novel candidates. This is the first mouse model of ETV6-RUNX1 to develop BCP-ALL and provides important insight into the cooperating genetic alterations in ETV6-RUNX1 leukemia.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Immunologically silent cancer clone transmission from mother to offspring

Takeshi Isoda; Anthony M. Ford; Daisuke Tomizawa; Frederik W. van Delft; David Gonzalez de Castro; Norkio Mitsuiki; Joannah Score; Tomohiko Taki; Tomohiro Morio; Masatoshi Takagi; Hiroh Saji; Mel Greaves; Shuki Mizutani

Rare cases of possible materno-fetal transmission of cancer have been recorded over the past 100 years but evidence for a shared cancer clone has been very limited. We provide genetic evidence for mother to offspring transmission, in utero, of a leukemic cell clone. Maternal and infant cancer clones shared the same unique BCR-ABL1 genomic fusion sequence, indicating a shared, single-cell origin. Microsatellite markers in the infant cancer were all of maternal origin. Additionally, the infant, maternally-derived cancer cells had a major deletion on one copy of chromosome 6p that included deletion of HLA alleles that were not inherited by the infant (i.e., foreign to the infant), suggesting a possible mechanism for immune evasion.


British Journal of Haematology | 2005

Prospective gene expression analysis accurately subtypes acute leukaemia in children and establishes a commonality between hyperdiploidy and t(12;21) in acute lymphoblastic leukaemia

Frederik W. van Delft; Zhiyuan Luo; Louise Jones; Naina Patel; Olga Yiannikouris; Alexander S. Hill; Mike Hubank; Helena Kempski; Danielle Fletcher; Tracy Chaplin; Nicola Foot; Bryan D. Young; Ian Hann; Alexander Gammerman; Vaskar Saha

We have prospectively analysed and correlated the gene expression profiles of children presenting with acute leukaemia to the Royal London and Great Ormond Street Hospitals with morphological diagnosis, immunophenotype and karyotype. Total RNA extracted from freshly sorted blast cells was obtained from 84 lymphoblastic [acute lymphoblastic leukaemia (ALL)], 20 myeloid [acute myeloid leukaemia (AML)] and three unclassified acute leukaemias and hybridised to the high density Affymetrix U133A oligonucleotide array. Analysis of variance and significance analysis of microarrays was used to identify discriminatory genes. A novel 50‐gene set accurately identified all patients with ALL and AML and predicted for a diagnosis of AML in three patients with unclassified acute leukaemia. A unique gene set was derived for each of eight subtypes of acute leukaemia within our data set. A common profile for children with ALL with an ETV6–RUNX1 fusion, amplification or deletion of ETV6, amplification of RUNX1 or hyperdiploidy with an additional chromosome 21 was identified. This suggests that these rearrangements share a commonality in biological pathways that maintains the leukaemic state. The gene TERF2 was most highly expressed in this group of patients. Our analyses demonstrate that not only is microarray analysis the single most effective tool for the diagnosis of acute leukaemias of childhood but it has the ability to identify unique biological pathways. To further evaluate its prognostic value it needs to be incorporated into the routine diagnostic analysis for large‐scale clinical trials in childhood acute leukaemias.


Stem cell reports | 2015

Genetic and Functional Diversity of Propagating Cells in Glioblastoma

Sara Piccirillo; Sue Colman; Nicola E Potter; Frederik W. van Delft; Suzanne Lillis; Maria-Jose Carnicer; Lyndal Kearney; Colin Watts; Mel Greaves

Summary Glioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo.


British Journal of Haematology | 2015

Distinctive genotypes in infants with T-cell acute lymphoblastic leukaemia

Marcela Braga Mansur; Frederik W. van Delft; Susan M. Colman; Caroline L. Furness; Jane Gibson; Mariana Emerenciano; Helena Kempski; Emmanuelle Clappier; Hélène Cavé; Jean Soulier; Maria S. Pombo-de-Oliveira; Mel Greaves; Anthony M. Ford

Infant T‐cell acute lymphoblastic leukaemia (iT‐ALL) is a very rare and poorly defined entity with a poor prognosis. We assembled a unique series of 13 infants with T‐ALL, which allowed us to identify genotypic abnormalities and to investigate prenatal origins. Matched samples (diagnosis/remission) were analysed by single nucleotide polymorphism‐array to identify genomic losses and gains. In three cases, we identified a recurrent somatic deletion on chromosome 3. These losses result in the complete deletion of MLF1 and have not previously been described in T‐ALL. We observed two cases with an 11p13 deletion (LMO2‐related), one of which also harboured a deletion of RB1. Another case presented a large 11q14·1‐11q23·2 deletion that included ATM and only five patients (38%) showed deletions of CDKN2A/B. Four cases showed NOTCH1 mutations; in one case FBXW7 was the sole mutation and three cases showed alterations in PTEN. KMT2A rearrangements (KMT2A‐r) were detected in three out of 13 cases. For three patients, mutations and copy number alterations (including deletion of PTEN) could be backtracked to birth using neonatal blood spot DNA, demonstrating an in utero origin. Overall, our data indicates that iT‐ALL has a diverse but distinctive profile of genotypic abnormalities when compared to T‐ALL in older children and adults.


Cancer Chemotherapy and Pharmacology | 2016

Drug interactions may be important risk factors for methotrexate neurotoxicity, particularly in pediatric leukemia patients

Victoria J. Forster; Frederik W. van Delft; Susan F. Baird; Shona Mair; Roderick Skinner; Christina Halsey

PurposeMethotrexate administration is associated with frequent adverse neurological events during treatment for childhood acute lymphoblastic leukemia. Here, we present evidence to support the role of common drug interactions and low vitamin B12 levels in potentiating methotrexate neurotoxicity.MethodsWe review the published evidence and highlight key potential drug interactions as well as present clinical evidence of severe methotrexate neurotoxicity in conjunction with nitrous oxide anesthesia and measurements of vitamin B12 levels among pediatric leukemia patients during therapy.ResultsWe describe a very plausible mechanism for methotrexate neurotoxicity in pediatric leukemia patients involving reduction in methionine and consequential disruption of myelin production. We provide evidence that a number of commonly prescribed drugs in pediatric leukemia management interact with the same folate biosynthetic pathways and/or reduce functional vitamin B12 levels and hence are likely to increase the toxicity of methotrexate in these patients. We also present a brief case study supporting out hypothesis that nitrous oxide contributes to methotrexate neurotoxicity and a nutritional study, showing that vitamin B12 deficiency is common in pediatric leukemia patients.ConclusionsUse of nitrous oxide in pediatric leukemia patients at the same time as methotrexate use should be avoided especially as many suitable alternative anesthetic agents exist. Clinicians should consider monitoring levels of vitamin B12 in patients suspected of having methotrexate-induced neurotoxic effects.

Collaboration


Dive into the Frederik W. van Delft's collaboration.

Top Co-Authors

Avatar

Mel Greaves

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Lyndal Kearney

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Anthony M. Ford

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Nicola E Potter

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Colin Watts

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Helena Kempski

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Maria-Jose Carnicer

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Susan M. Colman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Vaskar Saha

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Caroline L. Furness

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge