Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédérique Bonnemoy is active.

Publication


Featured researches published by Frédérique Bonnemoy.


Pest Management Science | 2000

Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites.

Céline Tixier; Philippe Bogaerts; Martine Sancelme; Frédérique Bonnemoy; Landoald Twagilimana; Annie Cuer; Jacques Bohatier; Henri Veschambre

Microbial degradation, organic synthesis and ecotoxicology were used to investigate the fate of diuron after spreading on soils. Quantitative biodegradation assays were performed with fungal strains, showing that diuron was degraded but not entirely mineralized. The modifications observed consisted in demethylation of the terminal nitrogen atom. The identified metabolites were synthesized in sufficient amounts to confirm their structures and determine their non-target toxicity using four biotests. The two metabolites exhibited higher effects than parent diuron. This limited biodegradability and potential aquatic toxicity suggest that diuron is of higher environmental concern than previously recognized.


Chemosphere | 2002

Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi

Céline Tixier; Martine Sancelme; Selim Aït-Aïssa; Pascale Widehem; Frédérique Bonnemoy; Annie Cuer; Nicole Truffaut; Henri Veschambre

In order to assess the influence of the aromatic substitution on the ability of a soil bacterial strain, Arthrobacter sp. N2, to degrade phenylurea herbicides, biotransformation assays were performed in mineral medium with resting cells of this soil bacterial strain on three phenylurea herbicides (diuron, chlorotoluron and isoproturon). Each herbicide considered, led to the formation of only one metabolite detected by HPLC analysis. After isolation, the metabolites were identified by NMR and MS, as the corresponding substituted anilines. According to the Microtox test (realized on the bacterium Vibrio fischeri), these metabolites presented non-target toxicity far more important (up to 600 times higher for 4-isopropylaniline) than the parent molecule. For isoproturon and chlorotoluron, the amount of substituted anilines obtained at the end of the biotransformation was very low, whereas the biotransformation of diuron into 3,4-dichloroaniline was almost quantitative. In this last case, the degradation product accumulated in the medium. In soil, other microorganisms are present that might degrade it. So the biotransformation of 3,4-dichloroaniline was then tested with four fungal strains: Aspergillus niger, Beauveria bassiana, Cunninghamella echinulata var. elegans and Mortierella isabellina. The aniline was further transformed with all the microorganisms tested. Only one metabolite was detected by HPLC analysis and after isolation, it was identified to be 3,4-dichloroacetanilide. This acetylated compound led to biological effects less important on V. fischeri than 3,4-dichloroaniline. These results stress the importance of identifying the degradation products to assess the impact of a polluting agent. Indeed, the pollutant may undergo transformation yielding compounds more toxic than the parent molecule.


Archives of Environmental Contamination and Toxicology | 2008

Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri.

Jean-Louis Bonnet; Frédérique Bonnemoy; M. Dusser; Jacques Bohatier

The potential toxicity of sulcotrione (2-[2-chloro-4-(methylsulfonyl)benzoyl]-1,3-cyclohexanedione) and mesotrione (2-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione), two selective triketonic herbicides, was assessed using representative environmental microorganisms frequently used in ecotoxicology: the eukaryote Tetrahymena pyriformis and the prokaryote Vibrio fischeri. The aims were also to evaluate the toxicity of different known degradation products, to compare the toxicity of these herbicides with that of atrazine, and to assess the toxicity of the commercial herbicidal products Mikado® and Callisto®. Toxicity assays involved the Microtox test, the T. pyriformis population growth impairment test, and the T. pyriformis nonspecific esterase activity test. For each compound, we report original data (IC50 values) on nontarget cells frequently used in ecotoxicology. Analytical standards sulcotrione and mesotrione showed no toxic effect on T. pyriformis population growth but a toxic influence was observed on nonspecific esterase activities of this microorganism and on metabolism of V. fischeri. Most of the degradation products studied and the two commercial formulations showed a greater toxicity than the parent molecules. Compared with the effect of atrazine, the toxicity of these triketonic herbicides was less than in T. pyriformis and greater than or the same as in V. fischeri. Additional work is needed to obtain a more accurate picture of the environmental impact of these herbicides. It will be necessary in future experiments to study the ecosystemic levels (aquatic and soil compartments) and to assess the potential toxicity of the newly discovered degradation products and of the additives accompanying the active ingredient in the commercial herbicidal formulations.


Aquatic Toxicology | 2008

Longitudinal changes in microbial planktonic communities of a French river in relation to pesticide and nutrient inputs.

Stéphane Pesce; Céline Fajon; Corinne Bardot; Frédérique Bonnemoy; Christophe Portelli; Jacques Bohatier

To determine the effects of anthropic activities on river planktonic microbial populations, monthly water samples were collected for 11 months from two sampling sites characterized by differing nutrient and pesticide levels. The difference in trophic level between the two stations was particularly pronounced from May to November. Total pesticide concentrations were notably higher at the downstream station from April to October with a clear predominance of herbicide residues, especially the glyphosate metabolite aminomethylphosphonic acid (AMPA). From spring, algal biomass and density were favored by the high orthophosphate concentrations recorded at the downstream location. However, isolated drops in algal biomass were recorded at this sampling station, suggesting an adverse effect of herbicides on algal communities. No major difference was observed in bacterial heterotrophic production, density, or activity (CTC reduction) between the two sampling stations. No major variation was detected using the fluorescent in situ hybridization (FISH) method, but shifts in bacterial community composition were recorded by PCR-TTGE analysis at the downstream station following high nutrient and pesticide inputs. However, outside the main anthropic pollution period, the waters chemical properties and planktonic microbial communities were very similar at the two sampling sites, suggesting a high recovery potential for this lotic system.


Chemosphere | 2013

Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test

Pierre Joly; Frédérique Bonnemoy; Jean-Christophe Charvy; Jacques Bohatier; Clarisse Mallet

The Microtox(®) test, using the prokaryote Vibrio fischeri, was employed to assess the toxicity of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their formulated compounds: Dual Gold Safeneur(®), Callisto(®) and Milagro(®); alone and in mixtures. For each compound we obtained original IC50 values, with consistent higher toxicities for formulated compounds compared to active ingredients alone. Mixtures of the four herbicides, prepared according to application doses encountered in agriculture, were found to be toxic at a lower concentration than single molecules. Mesotrione and nicosulfuron mixture appeared to be highly toxic to V. fischeri, however, this recommended post-emergence combination for maize crops got its toxicity decreased in formulated compound mixtures, suggesting that chemical interactions could potentially reduce the toxicity. Data comparisons to theoretical models showed a good prediction of mixture toxicity by Concentration Addition concept. Results seemed to exclude any synergistic effects on V. fischeri for the tested herbicide mixtures. Additional work coupling these bioassay data to ecosystemic level studies (aquatic and soil compartments) and data on additives and degradation products toxicity, will help to fill the gap in our knowledge of the environmental impact of these xenobiotics and in the choice of a more sustainable use of pesticides.


Thin Solid Films | 2011

Tunable functionality and toxicity studies of titanium dioxide nanotube layers

E. Feschet-Chassot; V. Raspal; Y. Sibaud; Frédérique Bonnemoy; Jl Bonnet; Jacques Bohatier

In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.


Pest Management Science | 2009

Photolysis of the herbicide sulcotrione: formation of a major photoproduct and its toxicity evaluation

Alexandra ter Halle; Jaroslaw Wiszniowski; Adnane Hitmi; Gérand Ledoigt; Frédérique Bonnemoy; Jean-Louis Bonnet; Jacques Bohatier; Claire Richard

BACKGROUND Sulcotrione is a selective herbicide marketed for use in maize since 1993, but its environmental fate is not yet fully elucidated. A major metabolite resulting from cleavage between the two ring moieties, leading to 2-chloro-4-mesylbenzoic acid (CMBA), has been identified; it presents a rather low toxicity. In photochemical studies this compound has also been claimed to be formed in high proportions. The present authors recently found that, under irradiation, sulcotrione mainly yields a cyclization product (CP). Thus, Sulcotrione photochemistry is still a matter of debate. The aim of the present work was to give an unequivocal answer to this issue. The potential toxicity of CP, CMBA and sulcotrione towards three organisms considered as representative of aquatic ecosystems was also evaluated. RESULTS The main transformation product of sulcotrione is the cyclization product (CP), and CMBA is formed in smaller amounts. For the toxicological approach, the tested organisms were a bacterium, Vibrio fischeri (Bejerinck) Lehmann & Neumann, an alga, Pseudokirchneriella subcapitata (Korshikov) Hindak, and a protozoan, Tetrahymena pyriformis (Ehrenberg) Lwoff. Sulcotrione is more harmful towards the alga, but CP is more toxic to the bacterium and the protozoan. It must be noted that the measured toxicities are nonetheless rather low. CONCLUSION On irradiation, sulcotrione mainly gives the photocyclization product, which presents a higher toxicity than sulcotrione and CMBA. This cyclization product should thus be considered in sulcotrione environmental risk assessment.


Journal of Hazardous Materials | 2017

Identification of sulfonylurea biodegradation pathways enabled by a novel nicosulfuron-transforming strain Pseudomonas fluorescens SG-1: Toxicity assessment and effect of formulation

Louis Carles; Muriel Joly; Frédérique Bonnemoy; Martin Leremboure; Isabelle Batisson; Pascale Besse-Hoggan

Nicosulfuron is a selective herbicide belonging to the sulfonylurea family, commonly used on maize culture. A bacterial strain SG-1 was isolated from an agricultural soil previously treated with nicosulfuron. This strain was identified as Pseudomonas fluorescens and is able to quantitatively dissipate 77.5% of nicosulfuron (1mM) at 28°C in the presence of glucose within the first day of incubation. Four metabolites were identified among which ASDM (2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide) and ADMP (2-amino-4,6-dimethoxypyrimidine) in substantial proportions, corresponding to the hydrolytic sulfonylurea cleavage. Two-phase dissipation kinetics of nicosulfuron by SG-1 were observed at the highest concentrations tested (0.5 and 1mM) due to biosorption. The extend and rate of formulated nicosulfuron transformation were considerably reduced compared to those with the pure active ingredient (appearance of a lag phase, 30% dissipation after 10days of incubation instead of 100% with the pure herbicide) but the same metabolites were observed. The toxicity of metabolites (standardized Microtox® test) showed a 20-fold higher toxicity of ADMP than nicosulfuron. P. fluorescens strain SG-1 was also able to biotransform two other sulfonylureas (metsulfuron-methyl and tribenuron-methyl) with various novel pathways. These results provide new tools for a comprehensive picture of the sulfonylurea environmental fate and toxicity of nicosulfuron in the environment.


Water Air and Soil Pollution | 2015

Responses of Limagne “Clay/Organic Matter-Rich” Soil Microbial Communities to Realistic Formulated Herbicide Mixtures, Including S-Metolachlor, Mesotrione, and Nicosulfuron

Pierre Joly; Frédérique Bonnemoy; Pascale Besse-Hoggan; Fanny Perrière; Olivier Crouzet; Nathalie Cheviron; Clarisse Mallet

Soil is a primary resource used by mankind to ensure its needs mainly through agriculture. Its sustainability is regulated by the indigenous organisms it contains such as microorganisms. Current agricultural practices employ mixtures of pesticides to ensure the crops yield and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of microorganisms to pesticide mixtures are scarce. In this context, we designed a 3-month microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur®), mesotrione (Callisto®), and nicosulfuron (Milagro®) on the abundance, the diversity, and the activities of microorganisms from a “clay/organic matter-rich” soil, with a particular attention given to N-cycle communities. These communities appeared to be quite resistant to realistic mixtures even if transient effects occurred on the N-cycle-related communities with an increase of ammonification and an inhibition of nitrification as a short-term effect, followed by an increase of denitrification and an accumulation of nitrates. As nitrates are known to be highly leachable with a strong pollution potential, intensive studies should be carried out at field level to conclude on this potential accumulation and its consequences. Moreover, these data now need to be compared with other agricultural soils receiving these herbicide mixtures in order to bring general conclusion on such practices.


Environmental Toxicology and Chemistry | 2010

Ecotoxicological effects of diuron and chlorotoluron nitrate‐induced photodegradation products: Monospecific and aquatic mesocosm‐integrated studies

Sylvie Nelieu; Frédérique Bonnemoy; Jean-Louis Bonnet; Luz Lefeuvre; Damien Baudiffier; Micheline Heydorff; Alphonse Quemeneur; Didier Azam; Paul-Henri Ducrot; Laurent Lagadic; Jacques Bohatier; Jacques Einhorn

The ecotoxicological impact of nitrate-induced photodegradation products of diuron and chlorotoluron was studied through monospecific biotests conducted in conjunction with experiments in outdoor aquatic mesocosms. Organisms representing three trophic levels were used: two heterotrophic microorganisms, the luminescent bacterium Vibrio fischeri and the ciliated protozoa Tetrahymena pyriformis, and one metazoa, the gastropod Lymnaea stagnalis. Among the variety of the phenylurea photoproducts, the N-formylated ones appeared clearly more toxic than the parent compounds towards the microorganisms, whereas the nitroderivatives showed a similar toxicity. Using photodegraded solutions of diuron, toxicity was maintained or even increased during disappearance of the initial herbicide, demonstrating that some of the photoproducts may have an impact additively or in synergy. Enzymatic biomarker assays performed on Lymnaea stagnalis exposed under monospecific conditions showed significant effects, due to the combination of nitrate with the pesticide and its photoproducts. A positive impact on snail fecundity was observed with chlorotoluron both under monospecific laboratory and integrated mesocosm conditions. Oviposition stimulation took place when first- and second-generation photoproducts were predominant.

Collaboration


Dive into the Frédérique Bonnemoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clarisse Mallet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascale Besse-Hoggan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martine Sancelme

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Corinne Bardot

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

Pierre Joly

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Richard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Annie Cuer

Blaise Pascal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge