Frédérique Laurent
Claude Bernard University Lyon 1
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédérique Laurent.
Combustion Theory and Modelling | 2001
Frédérique Laurent; Marc Massot
A first attempt at deriving a fully Eulerian model for polydisperse evaporating sprays was developed by Tambour et al with the so-called sectional approach. However, the complete derivation of the sectional ‘multi-fluid’ conservation equations from the Boltzmann-type spray equation was never provided, neither was the set of underlying assumptions nor the comparison with the classical Lagrangian model: the sampling method. In this paper, we clarify the set of assumptions necessary in order to derive the multi-fluid sectional model from the spray equation at the ‘kinetic level’ and provide the derivation of the whole set of conservation equations describing the dispersed liquid phase. Whereas the previous derivation is conducted in any space dimension, we restrict ourselves to one-dimensional stationary flows where the droplets do not turn back and derive a Eulerian sampling model which is equivalent in this context to the usual Lagrangian particle approach. We then identify some situations, even within this restrictive framework, where the sectional approach fails to reproduce the coupling of the vaporization and dynamics of the spray, the sampling method then being required. In the domain of applicability of the sectional approach, the two methods are then compared numerically in the configuration of counterflow spray diffusion flames. The two methods, if refined enough, give quite similar results, except for some small differences, the origin of which is identified. It is proved that the sampling method is more precise even if it generates oscillations due to the intrinsic representation of a continuous function by Dirac delta functions. We thus provide a comprehensive analysis of the sectional approach from both the modelling and numerical points of view.
Comptes Rendus Mathematique | 2002
Frédérique Laurent
Resume Cette Note concerne lanalyse numerique dune methode multi-fluide Eulerienne pour la description de sprays polydisperses qui sevaporent et ce, sur une configuration stationnaire 1D, sans effet dynamique ni thermique ou seul laspect evaporation subsiste. Lespace des phases se reduit alors a la position et la taille des gouttes. On donne les conditions sous lesquelles la methode est dordre 1 en le pas de discretisation de la taille de goutte. Dautre part, la stabilite du θ-schema pour la discretisation en espace ainsi que la positivite des variables necessitent des conditions CFL precisees ici. On donne ainsi le « bon choix » de la variable taille de goutte et de la discretisation en cette variable. Pour citer cet article : F. Laurent, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 417–422.
Journal of Computational Physics | 2004
Frédérique Laurent; Marc Massot; Philippe Villedieu
Archive | 2009
Marc Massot; Stéphane de Chaisemartin; Lucie Fréret; Damien Kah; Frédérique Laurent
Archive | 2007
Stéphane de Chaisemartin; Frédérique Laurent; Marc Massot; Julien Reveillon
Internation Conference on Mutiphase Flows | 2010
Lucie Fréret; Stéphane de Chaisemartin; Julien Reveillon; Frédérique Laurent; Marc Massot
European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) | 2012
Alaric Sibra; Frédérique Laurent; Angelo Murrone; Joel Dupays; Marc Massot
7th International Conference on Mutiphase Flows | 2010
Damien Kah; Marc Massot; Quang Huy Tran; Stéphane Jay; Frédérique Laurent
53rd AIAA/SAE/ASEE Joint Propulsion Conference | 2017
Valentin Dupif; Joel Dupays; Marc Massot; Frédérique Laurent
9th International Conference on Multiphase Flow (ICMF) | 2016
Mohamed Essadki; Stéphane de Chaisemartin; Marc Massot; Frédérique Laurent; Adam Larat; Stéphane Jay