Frédérique Lembo
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédérique Lembo.
Nature Communications | 2014
Rania Ghossoub; Frédérique Lembo; Aude Rubio; Carole Baron Gaillard; Jérôme Bouchet; Nicolas Vitale; Josef Slavík; Miroslav Machala; Pascale Zimmermann
Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Chantal Abergel; Vincent Monchois; Deborah Byrne; Sabine Chenivesse; Frédérique Lembo; Jean-Claude Lazzaroni; Jean-Michel Claverie
Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates.
Molecular & Cellular Proteomics | 2013
Edwige Belotti; Jolanta Polanowska; Avais M. Daulat; Stéphane Audebert; Virginie Thomé; Jean-Claude Lissitzky; Frédérique Lembo; Karim Blibek; Shizue Omi; Nicolas Lenfant; Akanksha Gangar; Mireille Montcouquiol; Marie-Josée Santoni; Michael Sebbagh; Michel Aurrand-Lions; Stephane Angers; Laurent Kodjabachian; Jérôme Reboul; Jean-Paul Borg
Protein–protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRβ, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions.
Development | 2012
Arnaud P. Giese; Jérôme Ezan; Lingyan Wang; Léa Lasvaux; Frédérique Lembo; Claire Mazzocco; Elodie Richard; Jérôme Reboul; Jean Paul Borg; Matthew W. Kelley; Nathalie Sans; John Brigande; Mireille Montcouquiol
Vangl2 is one of the central proteins controlling the establishment of planar cell polarity in multiple tissues of different species. Previous studies suggest that the localization of the Vangl2 protein to specific intracellular microdomains is crucial for its function. However, the molecular mechanisms that control Vangl2 trafficking within a cell are largely unknown. Here, we identify Gipc1 (GAIP C-terminus interacting protein 1) as a new interactor for Vangl2, and we show that a myosin VI-Gipc1 protein complex can regulate Vangl2 traffic in heterologous cells. Furthermore, we show that in the cochlea of MyoVI mutant mice, Vangl2 presence at the membrane is increased, and that a disruption of Gipc1 function in hair cells leads to maturation defects, including defects in hair bundle orientation and integrity. Finally, stimulated emission depletion microscopy and overexpression of GFP-Vangl2 show an enrichment of Vangl2 on the supporting cell side, adjacent to the proximal membrane of hair cells. Altogether, these results indicate a broad role for Gipc1 in the development of both stereociliary bundles and cell polarization, and suggest that the strong asymmetry of Vangl2 observed in early postnatal cochlear epithelium is mostly a ‘tissue’ polarity readout.
Nature Communications | 2014
Mahdi Mojallal; Yujuan Zheng; Sara Hultin; Stéphane Audebert; Tanja van Harn; Per Johnsson; Claes Lenander; Nicolas Fritz; Christin Mieth; Martin Corcoran; Frédérique Lembo; Marja Hallström; Johan Hartman; Nathalie M. Mazure; Thomas Weide; Dan Grandér; Jean-Paul Borg; Per Uhlén; Lars Holmgren
The establishment and maintenance of apical-basal cell polarity is essential for the functionality of glandular epithelia. Cell polarity is often lost in advanced tumours correlating with acquisition of invasive and malignant properties. Despite extensive knowledge regarding the formation and maintenance of polarity, the mechanisms that deregulate polarity in metastasizing cells remain to be fully characterized. Here we show that AmotL2 expression correlates with loss of tissue architecture in tumours from human breast and colon cancer patients. We further show that hypoxic stress results in activation of c-Fos-dependent expression of AmotL2 leading to loss of polarity. c-Fos/hypoxia-induced p60 AmotL2 interacts with the Crb3 and Par3 polarity complexes retaining them in large vesicles and preventing them from reaching the apical membrane. The resulting loss of polarity potentiates the response to invasive cues in vitro and in vivo in mice. These data provide a molecular mechanism how hypoxic stress deregulates cell polarity during tumour progression.
Human Molecular Genetics | 2016
Véronique Chevrier; Ange-Line Bruel; Teunis J. P. van Dam; Brunella Franco; Melissa Lo Scalzo; Frédérique Lembo; Stéphane Audebert; Emilie Baudelet; Daniel Isnardon; Angélique Bole; Paul Borg; Paul Kuentz; Julien Thevenon; Lydie Burglen; Laurence Faivre; Jean-Baptiste Rivière; Martijn A. Huynen; Daniel Birnbaum; Olivier Rosnet; Christel Thauvin-Robinet
Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies.
PLOS ONE | 2013
Ylva Ivarsson; Anna Anna Maria Wawrzyniak; Rudra Kashyap; Jolanta Polanowska; Stéphane Betzi; Frédérique Lembo; Elke Vermeiren; Driss Chiheb; Nicolas Lenfant; Xavier Morelli; Jean-Paul Borg; Jérôme Reboul; Pascale Zimmermann
Background PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. Methodology/Principal Findings We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. Conclusions/Significance Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Naga Sailaja Imjeti; Kerstin Menck; Antonio Luis Egea-Jimenez; Céline Lecointre; Frédérique Lembo; Habib Bouguenina; Ali Badache; Rania Ghossoub; Guido David; Serge Roche; Pascale Zimmermann
Significance Viral-like nanovesicles of endosomal origin, or “exosomes,” are newly recognized vehicles of signals that cells use to communicate, in various systemic diseases, including cancer. Yet the molecular mechanisms that regulate the biogenesis and activity of exosomes remain obscure. Here, we establish that the oncogenic protein SRC stimulates the secretion of exosomes loaded with syntenin and syndecans, known co-receptors for a plethora of signaling and adhesion molecules. SRC phosphorylates conserved tyrosine residues in the syndecans and syntenin and stimulates their endosomal budding. Moreover, SRC-dependent exosomes have a promigratory activity that strictly depends on syntenin expression. This work sheds light on a function of SRC in cell-to-cell communication and mechanisms of exosome biogenesis and activity, with potential broad impact for physiopathology. The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin–syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell–cell communication, supported by syntenin exosomes, which is likely to contribute to tumor–host interactions.
Frontiers in Pharmacology | 2015
Rudra Kashyap; Bart Roucourt; Frédérique Lembo; Joanna Fares; Ane Marcos Carcavilla; Audrey Restouin; Pascale Zimmermann; Rania Ghossoub
The scaffold protein syntenin abounds during fetal life where it is important for developmental movements. In human adulthood, syntenin gain-of-function is increasingly associated with various cancers and poor prognosis. Depending on the cancer model analyzed, syntenin affects various signaling pathways. We previously have shown that syntenin allows syndecan heparan sulfate proteoglycans to escape degradation. This indicates that syntenin has the potential to support sustained signaling of a plethora of growth factors and adhesion molecules. Here, we aim to clarify the impact of syntenin loss-of-function on cancer cell migration, growth, and proliferation, using cells from various cancer types and syntenin shRNA and siRNA silencing approaches. We observed decreased migration, growth, and proliferation of the mouse melanoma cell line B16F10, the human colon cancer cell line HT29 and the human breast cancer cell line MCF7. We further documented that syntenin controls the presence of active β1 integrin at the cell membrane and G1/S cell cycle transition as well as the expression levels of CDK4, Cyclin D2, and Retinoblastoma proteins. These data confirm that syntenin supports the migration and growth of tumor cells, independently of their origin, and further highlight the attractiveness of syntenin as potential therapeutic target.
Journal of Immunology | 2016
Anne-Catherine Lhoumeau; Marie-Laure Arcangeli; Maria De Grandis; Marilyn Giordano; Jean-Christophe Orsoni; Frédérique Lembo; Florence Bardin; Sylvie Marchetto; Michel Aurrand-Lions; Jean-Paul Borg
Hematopoietic stem cells (HSCs) located in adult bone marrow or fetal liver in mammals produce all cells from the blood system. At the top of the hierarchy are long-term HSCs endowed with lifelong self-renewal and differentiation properties. These features are controlled through key microenvironmental cues and regulatory pathways, such as Wnt signaling. We showed previously that PTK7, a tyrosine kinase receptor involved in planar cell polarity, plays a role in epithelial Wnt signaling; however, its function in hematopoiesis has remained unexplored. In this article, we show that PTK7 is expressed by hematopoietic stem and progenitor cells, with the highest level of protein expression found on HSCs. Taking advantage of a Ptk7-deficient mouse strain, we demonstrate that loss of Ptk7 leads to a diminished pool of HSCs but does not affect in vitro or in vivo hematopoietic cell differentiation. This is correlated with increased quiescence and reduced homing abilities of Ptk7-deficient hematopoietic stem and progenitor cells, unraveling novel and unexpected functions for planar cell polarity pathways in HSC fate.