Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédérique Moyrand is active.

Publication


Featured researches published by Frédérique Moyrand.


PLOS Genetics | 2014

Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

Guilhem Janbon; Kate L. Ormerod; Damien Paulet; Edmond J. Byrnes; Vikas Yadav; Gautam Chatterjee; Nandita Mullapudi; Chung Chau Hon; R. Blake Billmyre; François Brunel; Yong Sun Bahn; Weidong Chen; Yuan Chen; Eve W. L. Chow; Jean Yves Coppée; Anna Floyd-Averette; Claude Gaillardin; Kimberly J. Gerik; Jonathan M. Goldberg; Sara Gonzalez-Hilarion; Sharvari Gujja; Joyce L. Hamlin; Yen-Ping Hsueh; Giuseppe Ianiri; Steven J.M. Jones; Chinnappa D. Kodira; Lukasz Kozubowski; Woei Lam; Marco A. Marra; Larry D. Mesner

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Eukaryotic Cell | 2006

Cryptococcus neoformans Senses CO2 through the Carbonic Anhydrase Can2 and the Adenylyl Cyclase Cac1

Estelle Mogensen; Guilhem Janbon; James Chaloupka; Clemens Steegborn; Man Shun Fu; Frédérique Moyrand; Torsten Klengel; David S. Pearson; Michael A. Geeves; Jochen Buck; Lonny R. Levin; Fritz A. Mühlschlegel

ABSTRACT Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO2) to infected hosts (5% CO2) is the induction of capsule biosynthesis. In cells, CO2 is hydrated to bicarbonate in a spontaneous reaction that is accelerated by carbonic anhydrases. Here we show that C. neoformans contains two β-class carbonic anhydrases, Can1 and Can2. We further demonstrate that CAN2, but not CAN1, is abundantly expressed and essential for the growth of C. neoformans in its natural environment, where CO2 concentrations are limiting. Structural studies reveal that Can2 forms a homodimer in solution. Our data reveal Can2 to be the main carbonic anhydrase and suggest a physiological role for bicarbonate during C. neoformans growth. Bicarbonate directly activates the C. neoformans Cac1 adenylyl cyclase required for capsule synthesis. We show that this specific activation is optimal at physiological pH.


Molecular Microbiology | 2001

Cas1p is a membrane protein necessary for the O‐acetylation of the Cryptococcus neoformans capsular polysaccharide

Guilhem Janbon; Uwe Himmelreich; Frédérique Moyrand; Luce Improvisi; Françoise Dromer

The capsule is certainly the most obvious virulence factor for Cryptococcus neoformans. The main capsule constituents are glucuronoxylomannans (GXM). Several studies have focused on the structure and chemistry of the GXM component of the capsule, yet little is known about the genetic basis of the capsule construction. Using a monoclonal antibody specific to a sugar epitope, we isolated a capsule‐structure mutant strain and cloned by complementation a gene named CAS1 that codes for a putative membrane protein. Although no sequence homology was found with any known protein in the different databases, protein analysis using the Propsearch software classified Cas1p as a putative glycosyltransferase. Cas1p is a well‐conserved evolutionary protein, as we identified one orthologue in the human genome, one in the drosophila genome and four in the plant Arabidopsis thaliana genome. Analysis of the capsule structure after CAS1 deletion showed that it is required for GXM O‐acetylation.


Molecular Microbiology | 2002

Isolation and characterization of capsule structure mutant strains of Cryptococcus neoformans

Frédérique Moyrand; Birgit Klaproth; Uwe Himmelreich; Françoise Dromer; Guilhem Janbon

The capsule of Cryptococcus neoformans is the most obvious virulence factor of this pathogenic yeast. The main capsule constituents are glucuronoxylomannans (GXM). Although several studies have focused on GXM composition and structure, very little is known about their genetics. To elucidate the relationship between the capsule structure and the pathophysiology of the cryptococcosis, genetic screening for mutant strains producing a structurally modified capsule was set up. Using monoclonal antibodies specific for different capsule sugar epitopes, we isolated strains with different mutated capsule structures (Cas mutants). According to their reactivities with various monoclonal antibodies, the mutants were classified into six groups (Cas1 to Cas6). One Cas2 mutant was used to clone the corresponding gene by complementation. This gene (USX1) encodes the previously identified UDP‐xylose synthase. We demonstrated that it is necessary for both capsule xylosylation and C. neoformans virulence.


Molecular Microbiology | 2007

Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence.

Frédérique Moyrand; Thierry Fontaine; Guilhem Janbon

The polysaccharidic capsule is the main virulence factor of Cryptococcus neoformans. It primarily comprised of two polysaccharides: glucuronoxylomannan (GXM, 88% of the capsule mass) and galactoxylomannan (GalXM, 7% of the capsule mass). We constructed a large collection of mutant strains in which genes potentially involved in capsule biosynthesis were deleted. We used a new post‐genomic approach to study the virulence of the strains. Primers specific for unique tags associated with the disruption cassette were used in a real‐time PCR virulence assay to measure the fungal burden of each strain in different organs of mice in multi‐infection experiments. With this very sensitive assay, we identified a putative UDP‐glucose epimerase (Uge1p) and a putative UDP‐galactose transporter (Ugt1p) essential for C. neoformans virulence. The uge1Δ and ugt1Δ strains are temperature sensitive and do not produce GalXM but synthesize a larger capsule. These mutant strains (GalXM negative, GXM positive) are not able to colonize the brain even at the first day of infection whereas GXM‐negative strains (GalXM positive) can still colonize the brain, although less efficiently than the wild‐type strain.


Eukaryotic Cell | 2004

UGD1, Encoding the Cryptococcus neoformans UDP-Glucose Dehydrogenase, Is Essential for Growth at 37°C and for Capsule Biosynthesis

Frédérique Moyrand; Guilhem Janbon

ABSTRACT We report the identification and disruption of the Cryptococcus neoformans var. grubii UGD1 gene encoding the UDP-glucose dehydrogenase, which catalyzes the conversion of UDP-glucose into UDP-glucuronic acid. Deletion of UGD1 led to modifications in the cell wall, as revealed by changes in the sensitivity of ugd1Δ cells to sodium dodecyl sulfate, NaCl, and sorbitol. Moreover, two of the yeasts major virulence factors—capsule biosynthesis and the ability to grow at 37°C—were impaired in ugd1Δ strains. These results suggest that the UDP-dehydrogenase represents the major, and maybe only, biosynthetic pathway for UDP-glucuronic acid in C. neoformans. Consequently, deletion of UGD1 blocked not only the synthesis of UDP-glucuronic acid but also that of UDP-xylose. To differentiate the phenotype(s) associated with the UDP-glucuronic acid defect alone from those linked to the UDP-xylose defect, ugd1Δ mutants were phenotypically compared to strains from which the gene encoding UDP-xylose synthase (i.e., that required for synthesis of UDP-xylose) had been deleted. Finally, studies of strains from which one of the four CAP genes (CAP10, CAP59, CAP60, or CAP64) had been deleted revealed common cell wall phenotypes associated with the acapsular state.


Fungal Genetics and Biology | 2010

Characterizing the role of RNA silencing components in Cryptococcus neoformans

Guilhem Janbon; Shinae Maeng; Dong Hoon Yang; Young Joon Ko; Kwang Woo Jung; Frédérique Moyrand; Anna Floyd; Joseph Heitman; Yong Sun Bahn

The RNA interference (RNAi) mediated by homology-dependent degradation of the target mRNA with small RNA molecules plays a key role in controlling transcription and translation processes in a number of eukaryotic organisms. The RNAi machinery is also evolutionarily conserved in a wide variety of fungal species, including pathogenic fungi. To elucidate the physiological functions of the RNAi pathway in Cryptococcus neoformans that causes fungal meningitis, here we performed genetic analyses for genes encoding Argonaute (AGO1 and AGO2), RNA-dependent RNA polymerase (RDP1), and Dicers (DCR1 and DCR2) in both serotype A and D C. neoformans. The present study shows that Ago1, Rdp1, and Dcr2 are the major components of the RNAi process occurring in C. neoformans. However, the RNAi machinery is not involved in regulation of production of two virulence factors (capsule and melanin), sexual differentiation, and diverse stress response. Comparative transcriptome analysis of the serotype A and D RNAi mutants revealed that only modest changes occur in the genome-wide transcriptome profiles when the RNAi process was perturbed. Notably, the serotype D rdp1Δ mutants showed an increase in transcript abundance of active retrotransposons and transposons, such as T2 and T3, the latter of which is a novel serotype D-specific transposon of C. neoformans. In a wild type background both T2 and T3 were found to be weakly active mobile elements, although we found no evidence of Cnl1 retrotransposon mobility. In contrast, all three transposable elements exhibited enhanced mobility in the rdp1Δ mutant strain. In conclusion, the RNAi pathway plays an important role in controlling transposon activity and genome integrity of C. neoformans.


Eukaryotic Cell | 2004

Cas3p Belongs to a Seven-Member Family of Capsule Structure Designer Proteins

Frédérique Moyrand; Yun C. Chang; Uwe Himmelreich; Kyung J. Kwon-Chung; Guilhem Janbon

ABSTRACT The polysaccharide capsule is the main virulence factor of the basidiomycetous yeast Cryptococcus neoformans. Four genes (CAP10, CAP59, CAP60, and CAP64) essential for capsule formation have been previously identified, although their roles in the biosynthetic pathway remain unclear. A genetic and bioinformatics approach allowed the identification of six CAP64-homologous genes, named CAS3, CAS31, CAS32, CAS33, CAS34, and CAS35, in the C. neoformans genome. This gene family is apparently specific in a subclass of the basidiomycete fungi. Single as well as double deletions of these genes in all possible combinations demonstrated that none of the CAP64-homologous genes were essential for capsule formation, although the cas35Δ strains displayed a hypocapsular phenotype. The chemical structure of the glucuronomannan (GXM) produced by the CAS family deletants revealed that these genes determined the position and the linkage of the xylose and/or O-acetyl residues on the mannose backbone. Hence, these genes are all involved in assembly of the GXM structure in C. neoformans.


Eukaryotic Cell | 2008

UGE1 and UGE2 Regulate the UDP-Glucose/UDP-Galactose Equilibrium in Cryptococcus neoformans

Frédérique Moyrand; Ingrid Lafontaine; Thierry Fontaine; Guilhem Janbon

ABSTRACT The genome of the basidiomycete pathogenic yeast Cryptococcus neoformans carries two UDP-glucose epimerase genes (UGE1 and UGE2). UGE2 maps within a galactose cluster composed of a galactokinase homologue gene and a galactose-1-phosphate uridylyltransferase. This clustered organization of the GAL genes is similar to that in most of the hemiascomycete yeast genomes and in Schizosaccharomyces pombe but is otherwise not generally conserved in the fungal kingdom. UGE1 has been identified as necessary for galactoxylomannan biosynthesis and virulence. Here, we show that UGE2 is necessary for C. neoformans cells to utilize galactose as a carbon source at 30°C but is not required for virulence. In contrast, deletion of UGE1 does not affect cell growth on galactose at this temperature. At 37°C, a uge2Δ mutant grows on galactose in a UGE1-dependent manner. This compensation by UGE1 of UGE2 mutation for growth on galactose at 37°C was not associated with upregulation of UGE1 transcription or with an increase of the affinity of the enzyme for UDP-galactose at this temperature. We studied the subcellular localization of the two enzymes. Whereas at 30°C, Uge1p is at least partially associated with intracellular vesicles and Uge2p is on the plasma membrane, in cells growing on galactose at 37°C, Uge1p colocalizes with Uge2p to the plasma membrane, suggesting that its activity is regulated through subcellular localization.


Mbio | 2014

Capsule Growth in Cryptococcus neoformans Is Coordinated with Cell Cycle Progression

Rocío García-Rodas; Radames J. B. Cordero; Nuria Trevijano-Contador; Guilhem Janbon; Frédérique Moyrand; Arturo Casadevall; Oscar Zaragoza

ABSTRACT The fungal pathogen Cryptococcus neoformans has several virulence factors, among which the most important is a polysaccharide capsule. The size of the capsule is variable and can increase significantly during infection. In this work, we investigated the relationship between capsular enlargement and the cell cycle. Capsule growth occurred primarily during the G1 phase. Real-time visualization of capsule growth demonstrated that this process occurred before the appearance of the bud and that capsule growth arrested during budding. Benomyl, which arrests the cells in G2/M, inhibited capsule growth, while sirolimus (rapamycin) addition, which induces G1 arrest, resulted in cells with larger capsule. Furthermore, we have characterized a mutant strain that lacks a putative G1/S cyclin. This mutant showed an increased capacity to enlarge the capsule, both in vivo (using Galleria mellonella as the host model) and in vitro. In the absence of Cln1, there was a significant increase in the production of extracellular vesicles. Proteomic assays suggest that in the cln1 mutant strain, there is an upregulation of the glyoxylate acid cycle. Besides, this cyclin mutant is avirulent at 37°C, which correlates with growth defects at this temperature in rich medium. In addition, the cln1 mutant showed lower intracellular replication rates in murine macrophages. We conclude that cell cycle regulatory elements are involved in the modulation of the expression of the main virulence factor in C. neoformans. IMPORTANCE Cryptococcus neoformans is a pathogenic fungus that has significant incidence worldwide. Its main virulence factor is a polysaccharide capsule that can increase in size during infection. In this work, we demonstrate that this process occurs in a specific phase of the cell cycle, in particular, in G1. In agreement, mutants that have an abnormal longer G1 phase show larger capsule sizes. We believe that our findings are relevant because they provide a link between capsule growth, cell cycle progression, and virulence in C. neoformans that reveals new aspects about the pathogenicity of this fungus. Moreover, our findings indicate that cell cycle elements could be used as antifungal targets in C. neoformans by affecting both the growth of the cells and the expression of the main virulence factor of this pathogenic yeast. Cryptococcus neoformans is a pathogenic fungus that has significant incidence worldwide. Its main virulence factor is a polysaccharide capsule that can increase in size during infection. In this work, we demonstrate that this process occurs in a specific phase of the cell cycle, in particular, in G1. In agreement, mutants that have an abnormal longer G1 phase show larger capsule sizes. We believe that our findings are relevant because they provide a link between capsule growth, cell cycle progression, and virulence in C. neoformans that reveals new aspects about the pathogenicity of this fungus. Moreover, our findings indicate that cell cycle elements could be used as antifungal targets in C. neoformans by affecting both the growth of the cells and the expression of the main virulence factor of this pathogenic yeast.

Collaboration


Dive into the Frédérique Moyrand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Himmelreich

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge