Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédérique Pitel is active.

Publication


Featured researches published by Frédérique Pitel.


Nature Genetics | 2013

The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

Yinhua Huang; Yingrui Li; David W. Burt; Hualan Chen; Yong Zhang; Wubin Qian; Heebal Kim; Shangquan Gan; Yiqiang Zhao; Jianwen Li; Kang Yi; Huapeng Feng; Pengyang Zhu; Bo Li; Qiuyue Liu; Suan Fairley; Katharine E. Magor; Zhenlin Du; Xiaoxiang Hu; Laurie Goodman; Hakim Tafer; Alain Vignal; Taeheon Lee; Kyu-Won Kim; Zheya Sheng; Yang An; Steve Searle; Javier Herrero; M.A.M. Groenen; Richard P.M.A. Crooijmans

The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the ducks defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses.


BMC Genomics | 2006

Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence

Boniface B. Kayang; Valerie Fillon; Miho Inoue-Murayama; Mitsuru Miwa; Sophie Leroux; Katia Feve; J. L. Monvoisin; Frédérique Pitel; Matthieu Vignoles; Céline Mouilhayrat; Catherine Beaumont; Shin-ichi Ito; Francis Minvielle; Alain Vignal

BackgroundBy comparing the quail genome with that of chicken, chromosome rearrangements that have occurred in these two galliform species over 35 million years of evolution can be detected. From a more practical point of view, the definition of conserved syntenies helps to predict the position of genes in quail, based on information taken from the chicken sequence, thus enhancing the utility of this species in biological studies through a better knowledge of its genome structure. A microsatellite and an Amplified Fragment Length Polymorphism (AFLP) genetic map were previously published for quail, as well as comparative cytogenetic data with chicken for macrochromosomes. Quail genomics will benefit from the extension and the integration of these maps.ResultsThe integrated linkage map presented here is based on segregation analysis of both anonymous markers and functional gene loci in 1,050 quail from three independent F2 populations. Ninety-two loci are resolved into 14 autosomal linkage groups and a Z chromosome-specific linkage group, aligned with the quail AFLP map. The size of linkage groups ranges from 7.8 cM to 274.8 cM. The total map distance covers 904.3 cM with an average spacing of 9.7 cM between loci. The coverage is not complete, as macrochromosome CJA08, the gonosome CJAW and 23 microchromosomes have no marker assigned yet. Significant sequence identities of quail markers with chicken enabled the alignment of the quail linkage groups on the chicken genome sequence assembly. This, together with interspecific Fluorescence In Situ Hybridization (FISH), revealed very high similarities in marker order between the two species for the eight macrochromosomes and the 14 microchromosomes studied.ConclusionIntegrating the two microsatellite and the AFLP quail genetic maps greatly enhances the quality of the resulting information and will thus facilitate the identification of Quantitative Trait Loci (QTL). The alignment with the chicken chromosomes confirms the high conservation of gene order that was expected between the two species for macrochromosomes. By extending the comparative study to the microchromosomes, we suggest that a wealth of information can be mined in chicken, to be used for genome analyses in quail.


Genetics Selection Evolution | 2002

ChickRH6: a chicken whole-genome radiation hybrid panel

Mireille Morisson; Alexandre Lemière; Sarah Bosc; Maxime Galan; Florence Plisson-Petit; Philippe Pinton; Chantal Delcros; Katia Feve; Frédérique Pitel; Valerie Fillon; M. Yerle; Alain Vignal

As a first step towards the development of radiation hybrid maps, we have produced a radiation hybrid panel in the chicken by fusing female embryonic diploid fibroblasts irradiated at 6 000 rads with HPRT-deficient hamster Wg3hCl2 cells. Due to the low retention frequency of the chicken fragments, a high number of clones was produced from which the best ones were selected. Thus, 452 fusion clones were tested for retention frequencies with a panel of 46 markers. Based on these results, 103 clones with a mean marker retention of 23.8% were selected for large scale culture to produce DNA in sufficient quantities for the genotyping of numerous markers. Retention frequency was tested again with the same 46 markers and the 90 best clones, with a final mean retention frequency of 21.9%, were selected for the final panel. This panel will be a valuable resource for fine mapping of markers and genes in the chicken, and will also help in building BAC contigs.


Genetics Selection Evolution | 2006

Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness

Sandrine Lagarrigue; Frédérique Pitel; Wilfrid Carre; Behnam Abasht; Pascale Le Roy; André Neau; Yves Amigues; Michel Sourdioux; Jean Simon; Larry A. Cogburn; S. E. Aggrey; B. Leclercq; Alain Vignal; Madeleine Douaire

Quantitative trait loci (QTL) for abdominal fatness and breast muscle weight were investigated in a three-generation design performed by inter-crossing two experimental meat-type chicken lines that were divergently selected on abdominal fatness. A total of 585 F2 male offspring from 5 F1 sires and 38 F1 dams were recorded at 8 weeks of age for live body, abdominal fat and breast muscle weights. One hundred-twenty nine microsatellite markers, evenly located throughout the genome and heterozygous for most of the F1 sires, were used for genotyping the F2 birds. In each sire family, those offspring exhibiting the most extreme values for each trait were genotyped. Multipoint QTL analyses using maximum likelihood methods were performed for abdominal fat and breast muscle weights, which were corrected for the effects of 8-week body weight, dam and hatching group. Isolated markers were assessed by analyses of variance. Two significant QTL were identified on chromosomes 1 and 5 with effects of about one within-family residual standard deviation. One breast muscle QTL was identified on GGA1 with an effect of 2.0 within-family residual standard deviation.


PLOS Biology | 2011

Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering.

Chunyan Mou; Frédérique Pitel; David Gourichon; Florence Vignoles; Athanasia C. Tzika; Patricia Tato; Le Yu; Dave Burt; Bertrand Bed'Hom; Michèle Tixier-Boichard; Kevin J. Painter; Denis Headon

Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body.


Genetics Selection Evolution | 2005

A genome scan for quantitative trait loci affecting the Salmonella carrier-state in the chicken

Pierre Tilquin; Paul A. Barrow; José Marly; Frédérique Pitel; Florence Plisson-Petit; Philippe Velge; Alain Vignal; Philippe Baret; Nat Bumstead; Catherine Beaumont

Selection for increased resistance to Salmonella colonisation and excretion could reduce the risk of foodborne Salmonella infection. In order to identify potential loci affecting resistance, differences in resistance were identified between the N and 61 inbred lines and two QTL research performed. In an F2 cross, the animals were inoculated at one week of age with Salmonella enteritidis and cloacal swabs were carried out 4 and 5 wk post inoculation (thereafter called CSW4F2 and CSW4F2) and caecal contamination (CAECF2) was assessed 1 week later. The animals from the (N × 61) × N backcross were inoculated at six weeks of age with Salmonella typhimurium and cloacal swabs were studied from wk 1 to 4 (thereafter called CSW1BC to CSW4BC). A total of 33 F2 and 46 backcross progeny were selectively genotyped for 103 and 135 microsatellite markers respectively. The analysis used least-squares-based and non-parametric interval mapping. Two genome-wise significant QTL were observed on Chromosome 1 for CSW2BC and on Chromosome 2 for CSW4F2, and four suggestive QTL for CSW5F2 on Chromosome 2, for CSW5F2 and CSW2BC on chromosome 5 and for CAECF2 on chromosome 16. These results suggest new regions of interest and the putative role of SAL1.


General and Comparative Endocrinology | 2010

Is there a leptin gene in the chicken genome? Lessons from phylogenetics, bioinformatics and genomics

Frédérique Pitel; Thomas Faraut; Gilles Bruneau; Philippe Monget

The first publication describing the cloning of Gallus gallus leptin cDNA by Taouis et al. (1998) led to a controversy between some who succeeded in confirming these results (Ashwell et al., 1999) and others who failed to reproduce them (Friedman-Einat et al., 1999), controversy that has been recently debated in this journal (Sharp et al., 2008; Simon et al., 2009). Now, more than 10 years after, an increasing number of papers have been published describing the effects of exogenous (human as well as ‘‘chicken/mouse like”) recombinant leptin on chicken cell culture in vitro and on poultry in vivo. If the leptin gene really does not exist in these species, all these works would not have any relevant physiological significance, except to confirm the existence of a leptin receptor that binds human ligand. In the present paper, we will summarize arguments (mainly previously debated) that do not favor the presence of a leptin gene, and presents new genomic and bioinformatic data to enlighten the discussion.


Genetics Selection Evolution | 2003

AFLP linkage map of the Japanese quail Coturnix japonica

Odile Roussot; Katia Feve; Florence Plisson-Petit; Frédérique Pitel; Jean-Michel Faure; Catherine Beaumont; Alain Vignal

The quail is a valuable farm and laboratory animal. Yet molecular information about this species remains scarce. We present here the first genetic linkage map of the Japanese quail. This comprehensive map is based solely on amplified fragment length polymorphism (AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP markers were detected with 24 Taq I/Eco RI primer combinations. On average, 18 markers were produced per primer combination. Two hundred and fifty eight of the polymorphic markers were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups. The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers a total length of 1516 cM, with an average genetic distance between two consecutive markers of 7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken genes that will enable to link the maps of both species and make use of the powerful comparative mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for quantitative trait loci (QTL) mapping.


BMC Genomics | 2007

Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate

Javad Nadaf; Hélène Gilbert; Frédérique Pitel; Cécile Berri; Katia Feve; Catherine Beaumont; M. J. Duclos; Alain Vignal; Tom E. Porter; Jean Simon; S. E. Aggrey; Larry A. Cogburn; Elisabeth Le Bihan-Duval

BackgroundMeat technological traits (i.e. meat pH, water retention and color) are important considerations for improving further processing of chicken meat. These quality traits were originally characterized in experimental lines selected for high (HG) and low (LG) growth. Presently, quantitative trait loci (QTL) for these traits were analyzed in an F2 population issued from the HG × LG cross. A total of 698 animals in 50 full-sib families were genotyped for 108 microsatellite markers covering 21 linkage groups.ResultsThe HG and LG birds exhibit large differences in body weight and abdominal fat content. Several meat quality traits [pH at 15 min post-slaughter (pH15) and ultimate pH (pHu), breast color-redness (BCo-R) and breast color-yellowness (BCo-Y)] were lower in HG chickens. In contrast, meat color-lightness (BCo-L) was higher in HG chickens, whereas meat drip loss (DL) was similar in both lines. HG birds were more active on the shackle line. Association analyses were performed using maximum-likelihood interval mapping in QTLMAP. Five genome-wide significant QTLs were revealed: two for pH15 on GGA1 and GGA2, one for DL on GGA1, one for BCo-R and one for BCo-Y both on GGA11. In addition, four suggestive QTLs were identified by QTLMAP for BCo-Y, pHu, pH15 and DL on GGA1, GGA4, GGA12 and GGA14, respectively. The QTL effects, averaged on heterozygous families, ranged from 12 to 31% of the phenotypic variance. Further analyses with QTLExpress confirmed the two genome-wide QTLs for meat color on GGA11, failed to identify the genome-wide QTL for pH15 on GGA2, and revealed only suggestive QTLs for pH15 and DL on GGA1. However, QTLExpress qualified the QTL for pHu on GGA4 as genome-wide.ConclusionThe present study identified genome-wide significant QTLs for all meat technological traits presently assessed in these chickens, except for meat lightness. This study highlights the effects of divergent selection for growth rate on some behavioral traits, muscle biochemistry and ultimately meat quality traits. Several QTL regions were identified that are worthy of further characterization. Some QTLs may in fact co-localize, suggesting pleiotropic effects for some chromosomal regions.


BMC Genomics | 2010

Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate

Georgina A. Ankra-Badu; Daniel Shriner; Elisabeth Le Bihan-Duval; Sandrine Mignon-Grasteau; Frédérique Pitel; Catherine Beaumont; M. J. Duclos; Jean Simon; Tom E. Porter; Alain Vignal; Larry A. Cogburn; David B. Allison; Nengjun Yi; S. E. Aggrey

BackgroundDelineating the genetic basis of body composition is important to agriculture and medicine. In addition, the incorporation of gene-gene interactions in the statistical model provides further insight into the genetic factors that underlie body composition traits. We used Bayesian model selection to comprehensively map main, epistatic and sex-specific QTL in an F2 reciprocal intercross between two chicken lines divergently selected for high or low growth rate.ResultsWe identified 17 QTL with main effects across 13 chromosomes and several sex-specific and sex-antagonistic QTL for breast meat yield, thigh + drumstick yield and abdominal fatness. Different sets of QTL were found for both breast muscles [Pectoralis (P) major and P. minor], which suggests that they could be controlled by different regulatory mechanisms. Significant interactions of QTL by sex allowed detection of sex-specific and sex-antagonistic QTL for body composition and abdominal fat. We found several female-specific P. major QTL and sex-antagonistic P. minor and abdominal fatness QTL. Also, several QTL on different chromosomes interact with each other to affect body composition and abdominal fatness.ConclusionsThe detection of main effects, epistasis and sex-dimorphic QTL suggest complex genetic regulation of somatic growth. An understanding of such regulatory mechanisms is key to mapping specific genes that underlie QTL controlling somatic growth in an avian model.

Collaboration


Dive into the Frédérique Pitel's collaboration.

Top Co-Authors

Avatar

Alain Vignal

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sophie Leroux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Beaumont

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mireille Morisson

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

David Gourichon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Lagarrigue

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Katia Feve

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. J. Duclos

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Leterrier

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge