Frédérique Viard
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédérique Viard.
Molecular Ecology | 2015
Eric Pante; Nicolas Puillandre; Amélia Viricel; Sophie Arnaud-Haond; Didier Aurelle; Magalie Castelin; Anne Chenuil; Christophe Destombe; Didier Forcioli; Myriam Valero; Frédérique Viard; Sarah Samadi
Connectivity among populations determines the dynamics and evolution of populations, and its assessment is essential in ecology in general and in conservation biology in particular. The robust basis of any ecological study is the accurate delimitation of evolutionary units, such as populations, metapopulations and species. Yet a disconnect still persists between the work of taxonomists describing species as working hypotheses and the use of species delimitation by molecular ecologists interested in describing patterns of gene flow. This problem is particularly acute in the marine environment where the inventory of biodiversity is relatively delayed, while for the past two decades, molecular studies have shown a high prevalence of cryptic species. In this study, we illustrate, based on marine case studies, how the failure to recognize boundaries of evolutionary‐relevant unit leads to heavily biased estimates of connectivity. We review the conceptual framework within which species delimitation can be formalized as falsifiable hypotheses and show how connectivity studies can feed integrative taxonomic work and vice versa. Finally, we suggest strategies for spatial, temporal and phylogenetic sampling to reduce the probability of inadequately delimiting evolutionary units when engaging in connectivity studies.
Molecular Ecology | 2009
Sophie Plouviez; Timothy M. Shank; Baptiste Faure; Claire Daguin-Thiébaut; Frédérique Viard; François Lallier; Didier Jollivet
The use of sequence polymorphism from individual mitochondrial genes to infer past demography has recently proved controversial because of the recurrence of selective sweeps acting over genes and the need for unlinked multilocus data sets. However, comparative analyses using several species for one gene and/or multiple genes for one species can serve as a test for potential selective effects and clarify our understanding of historical demographic effects. This study compares nucleotide polymorphisms in mitochondrial cytochrome oxidase I across seven deep‐sea hydrothermal vent species that live along the volcanically active East Pacific Rise. Approximate Bayesian Computation (ABC) method, developed to trace shared vicariant events across species pairs, indicates the occurrence of two across species divergence times, and suggests that the present geographical patterns of genetic differentiation may be explained by two periods of significant population isolation. The oldest period dates back 11.6u2003Ma and is associated with the vent limpet Lepetodrilus elevatus, while the most recent period of isolation is 1.3u2003Ma, which apparently affected all species examined and coincides with a transition zone across the equator. Moreover, significant negative Tajima’s D and star‐like networks were observed for all southern lineages, suggesting that these lineages experienced a concomitant demographic and geographical expansion about 100u2003000–300u2003000 generations ago. This expansion may have initiated from a wave of range expansions during the secondary colonization of new sites along the Southern East Pacific Rise (founder effects below the equator) or recurrent bottleneck events because of the increase of eruptive phases associated with the higher spreading rates of the ridge in this region.
Molecular Ecology | 2004
Frédérique Viard; Jean-François Arnaud; Maxime Delescluse; Joël Cuguen
Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops‐to‐crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level.
Evolution | 2008
Marie-Laure Guillemin; Sylvain Faugeron; Christophe Destombe; Frédérique Viard; Juan A. Correa; Myriam Valero
Abstract The extent of changes in genetic diversity and life-history traits associated with farming was investigated in the haploid–diploid red alga, Gracilaria chilensis, cultivated in Chile. This alga belongs to one of the most frequently cultivated seaweed genera around the world. Fifteen farmed populations, 11 wild populations, and two subspontaneous populations were sampled along the Chilean coast. The frequency of reproductive versus vegetative individuals and of haploid versus diploid individuals was checked in each population. In addition, the distribution of genetic variation in wild and cultivated populations was analyzed using six microsatellite markers. Our results first demonstrated that farmed populations are maintained almost exclusively by vegetative propagation. Moreover, the predominance of diploid individuals in farms showed that farming practices had significantly modified life-history traits as compared to wild populations. Second, the expected reduction in genetic diversity due to a cultivation bottleneck and subsequent clonal propagation was detected in farms. Finally, our study suggested that cultural practices in the southern part of the country contributed to the spread of selected genotypes at a local scale. Altogether, these results document for the first time that involuntary selection could operate during the first step of domestication in a marine plant.
Evolution | 2013
Thomas Broquet; Frédérique Viard; Jonathan M. Yearsley
Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free‐living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a coancestry model and individual‐based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio‐temporal variation in FSTs between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage.
Molecular Ecology | 2009
Lise Dupont; Frédérique Viard; M. J. Dowell; C. Wood; John D. D. Bishop
Styela clava, an ascidian native to the northwest Pacific, was first recorded in the Atlantic at Plymouth, southwest England, in 1953. It now ranges in the northeast Atlantic from Portugal to northern Denmark, and has colonized the east coast of North America. Within the region of first introduction, we aimed to characterize current genetic diversity in the species, elucidate the respective roles of human‐aided vs. natural dispersal, and assess the extent of larval dispersal by looking for genetic differentiation at very small scales. Eight sites, mostly marinas, were studied along c. 200 km of coast in southwest England encompassing Plymouth. Five microsatellite loci were genotyped in 303 individuals to analyse gene flow at regional (among sites) and fine (within sites) scales. F‐statistics and assignment tests were used to investigate regional genetic structure. At the fine scale, deviation from mutation–drift equilibrium was tested, and isolation by distance and genetic clustering analyses were undertaken. Significant genetic differentiation existed between sites, unrelated to geographical separation; migration between geographically distant marinas was inferred, highlighting the likely importance of human‐mediated dispersal in range expansion and occupancy by S. clava. Fine‐scale population structure was present within at least four sites, which may be explained by the limited dispersal ability of this ascidian and recruitment from differentiated pools of larvae. Populations in enclosed marinas had higher self‐recruitment rates than those in open sites. Some marinas might therefore function as reservoirs of propagules for subsequent spread, whereas others might be sinks for migrants.
Biological Invasions | 2015
Thierry Comtet; Anna Sandionigi; Frédérique Viard; Maurizio Casiraghi
AbstractnBiological invasions are a major threat to the world’s biodiversity with consequences on ecosystem structure and functioning, species evolution, and human well-being (through ecosystem services). Conservation of biological diversity and management of biological resources require multi-level management strategies on non-native species, in order to (1) prevent biological introductions, (2) detect non-native species at an early stage of the introduction, and (3) eradicate or maintain at a low level of population density non-native species that were successfully introduced. A pre-requisite to any control measures on non-native species is the ability to rapidly and accurately identify the putative threatening alien species. DNA barcoding, and its recent extension, DNA metabarcoding are complementary tools that have proved their value in the identification of living beings. Here we review their use in the identification of non-native species at several steps of the introduction processes, and how they can be applied in the control and management of biological introductions. Through examples covering various taxa and ecosystems (terrestrial, freshwater, marine), we highlight the strengths and weaknesses of approaches that we foresee as crucial in the implementation of early warning strategies.
Biological Invasions | 2015
Marc Rius; Xavier Turon; Giacomo Bernardi; Filip Volckaert; Frédérique Viard
Over the last 15xa0years studies on invasion genetics have provided important insights to unravel cryptic diversity, track the origin of colonizers and reveal pathways of introductions. Despite all these advances, to date little is known about how evolutionary processes influence the observed genetic patterns in marine biological invasions. Here, firstlyxa0we review the literature on invasion genetics that include samples from European seas. These seas constitute a wide array of unique water masses with diverse degrees of connectivity, and have a long history of species introductions. We found that only a small fraction of the recorded introduced species has been genetically analysed. Furthermore, most studies restrict their approach to describe patterns of cryptic diversity and genetic structure, with the underlying mechanisms involved in the invasion process being largely understudied. Secondly, we analyse how genetic, reproductive and anthropogenic traits shape genetic patterns of marine introduced species. We found that most studies reveal similar genetic diversity values in both native and introduced ranges, report evidence of multiple introductions, and show that genetic patterns in the introduced range are not explained by taxonomic group or reproductive strategy. Finally, we discuss the evolutionary implications derived from genetic patterns observed in non-indigenous species. We identify different scenarios that are determined by propagule pressure, phenotypic plasticity and pre-adaptation, and the effects of selection and genetic admixture. We conclude that there is a need for further investigations of evolutionary mechanisms that affect individual fitness and adaptation to rapid environmental change.
PLOS ONE | 2011
Sharyn J. Goldstien; Lise Dupont; Frédérique Viard; Paul J. Hallas; Teruaki Nishikawa; David R. Schiel; Neil J. Gemmell; John D. D. Bishop
The solitary ascidian Styela clava Herdman, 1882 is considered to be native to Japan, Korea, northern China and the Russian Federation in the NW Pacific, but it has spread globally over the last 80 years and is now established as an introduced species on the east and west coasts of North America, Europe, Australia and New Zealand. In eastern Canada it reaches sufficient density to be a serious pest to aquaculture concerns. We sequenced a fragment of the cytochrome oxidase subunit I mitochondrial gene (COI) from a total of 554 individuals to examine the genetic relationships of 20 S. clava populations sampled throughout the introduced and native ranges, in order to investigate invasive population characteristics. The data presented here show a moderate level of genetic diversity throughout the northern hemisphere. The southern hemisphere (particularly New Zealand) displays a greater amount of haplotype and nucleotide diversity in comparison. This species, like many other invasive species, shows a range of genetic diversities among introduced populations independent of the age of incursion. The successful establishment of this species appears to be associated with multiple incursions in many locations, while other locations appear to have experienced rapid expansion from a potentially small population with reduced genetic diversity. These contrasting patterns create difficulties when attempting to manage and mitigate a species that continues to spread among ports and marinas around the world.
Biological Invasions | 2010
Lise Dupont; Frédérique Viard; M. H. Davis; T. Nishikawa; John D. D. Bishop
Styela clava, a solitary ascidian native to the NW Pacific, has become a conspicuous member of fouling communities in NW European waters. As its natural dispersal appears to be limited, the wide distribution of S. clava along coasts within its introduced range may be attributed to secondary spread assisted by human activities. Here, we used six microsatellite loci to examine the genetic diversity and extent of gene flow among S. clava populations in its European introduced range. Samples were collected from 21 populations within Europe (Nxa0=xa0808), 4 populations within the USA and two populations within the native range (Japan). Large variation in genetic diversity was observed among the European populations but were not explained either by the geographic distance from the first introduction area (i.e. Plymouth, UK) nor by the time elapsed since the introduction. No founder effect was observed in the introduced populations, except possibly in Puget Sound (USA). At least two different introductions occurred in Europe, identified as distinct genetic clusters: northern Danish populations (resembling one Japanese population), and the rest of Europe; a sample from Shoreham (England) possibly represents a third introduction. In North America, the population from the Atlantic was genetically similar to the majority of European populations, suggesting a European origin for populations on this seaboard, while populations from the Pacific coast were genetically similar to the same Japanese population as the Danish populations.