Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredric Newberg is active.

Publication


Featured researches published by Fredric Newberg.


european solid-state circuits conference | 1998

Wireless integrated network sensors: Low power systems on a chip

G. Asada; M. Dong; T.S. Lin; Fredric Newberg; Gregory J. Pottie; William J. Kaiser; H.O. Marcy

Wireless Integrated Network Sensors (WINS) now provide a new monitoring and control capability for transportation, manufacturing, health care, environmental monitoring, and safety and security. WINS combine sensing, signal processing, decision capability, and wireless networking capability in a compact, low power system. WINS systems combine microsensor technology with low power sensor interface, signal processing, and RF communication circuits. The need for low cost presents engineering challenges for implementation of these systems in conventional digital CMOS technology. This paper describes micropower data converter, digital signal processing systems, and weak inversion CMOS RF circuits. The digital signal processing system relies on a continuously operating spectrum analyzer. Finally, the weak inversion CMOS RF systems are designed to exploit the properties of high-Q inductors to enable low power operation. This paper reviews system architecture and low power circuits for WINS.


Smart Structures and Materials 1999: Smart Electronics and MEMS | 1999

Wireless integrated network sensors (WINS)

G. Asada; I. Bhatti; Tsung-Hsien Lin; S. Natkunanthanan; Fredric Newberg; R. Rofougaran; Anton I. Sipos; Scott Valoff; Gregory J. Pottie; William J. Kaiser

Wireless Integrated Network Systems (WINS) provide distributed network and Internet access to sensors, controls, and processors that are deeply embedded in equipment, facilities, and the environment. The WINS network is a new monitoring and control capability for applications in transportation, manufacturing, health care, environmental monitoring, and safety and security. WINS combine microsensor technology, low power signal processing, low power computation, and low power, low cost wireless networking capability in a compact system. WINS networks will provide sensing, local control, and embedded intelligent systems in structures, materials, and environments. This paper describes the WINS architecture and WINS technology components including sensor interface and WINS event recognition systems.


IEEE Transactions on Mobile Computing | 2004

Methods for scalable self-assembly of ad hoc wireless sensor networks

Katayoun Sohrabi; William M. Merrill; Jeremy Elson; Lewis Girod; Fredric Newberg; William J. Kaiser

In distributed wireless sensing applications such as unattended ground sensor systems, remote planetary exploration, and condition-based maintenance, where the deployment site is remote and/or the scale of the network is large, individual emplacement and configuration of the sensor nodes is difficult. Hence, network self-assembly and continuous network self-organization during the lifetime of the network in a reliable, efficient, and scalable manner are crucial for successful deployment and operation of such networks. This paper provides an overview of the concept of network self-assembly for ad hoc wireless sensor networks at the link layer, with descriptions of results from implementation of a novel network formation mechanism for wireless unattended ground sensor applications using a multicluster hierarchical topology and a novel dual-radio architecture.


Unattended Ground Sensor Technologies and Applications IV | 2002

Open standard development platforms for distributed sensor networks

William M. Merrill; Katayoun Sohrabi; Lewis Girod; Jeremy Elson; Fredric Newberg; William J. Kaiser

In the development of distributed security sensor networks a large variety of prototype systems have been implemented and tested. However these systems tend to be developer specific and require substantial overhead in demonstrating more than one application. To bridge the gap between embedded, networked systems and desktop simulation environments, systems are necessary which are easily deployable and allow extended operation of distributed sensor networks, while allowing the flexibility to quickly test and evaluate a variety of operational algorithms. To enable fast optimization by leveraging the widest development community, open standards for such a portable development system are desired. An open development system allows individual developers and small groups to focus on and optimize specific aspects of a distributed sensor network within realistic deployment constraints, prior to complete integration and deployment of a system within a specific application. By providing an embedded sensor and processing platform with integrated wired and wireless networking, a modular software suite separating access and control of individual processes, and open APIs, algorithm development and software optimization can be greatly accelerated and more robustly tested. To meet the unique needs of distributed sensor network applications, additional separation must be provided between the access to various subsystems, for example real-time embedded control versus tasks with less stringent timing requirements. An open platform that separates these requirements allows developers to accelerate testing and development of applications by focusing on individual components of the distributed sensor system, such as target tracking or low power networking. The WINS NG 2.0 developers platform, provided by Sensoria Corporation for the DARPA/ITO Sensor Information Technology (SensIT) program, provides one example of such a system. This systems bridge the gap between dedicated desktop development environments and embedded application-specif


Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and Applications VI | 2004

A modular low-energy wireless sensing and processing platform with an open software framework for unattended ground sensor applications

Fredric Newberg; Dustin McIntire; Brian Schiffer; Scott Valoff; William J. Kaiser

A low-power hardware platform and a software framework to support distributed wireless sensing for unattended ground sensor (UGS) applications has been developed. This platform provides a comprehensive set of hardware capabilities needed to meet the sensing, processing, and communication requirements for UGS, including a 16-channel analog interface, a processor dedicated to managing real-time requirements, dual wireless interfaces, and a low-power system bus to enable system modularity. An open software framework based on the Linux kernel is hosted on the main system processor. This framework incorporates the tools for effectively utilizing the capabilities of the hardware platform and rapidly developing applications in a networked, embedded environment.


Unattended Ground Sensor Technologies and Applications V | 2003

Energy-aware networked embedded systems for tactical unattended ground sensors

Fredric Newberg; Dustin McIntire; Brian Schiffer; Scott Valoff; William M. Merrill; Katayoun Sohrabi; William J. Kaiser

A system architecture, and a hardware implementation leveraging the architecture, has been developed for energy-aware, networked, embedded systems designed for use in tactical unattended ground sensor (UGS) applications. This modular system architecture is designed around a flexible bus design that meets the needs for low-power embedded systems, incorporating support for 32-bit inter-module data transfers, module synchronization, power control, and power distribution. A Linux-based software framework operating on the main system processor has been developed to provide application developers with the ability to easily leverage the hardware functionality of the system. The low-power design methods employed in the system design are discussed along with a system implementation using these methods.


Archive | 2000

Method for collecting data using compact internetworked wireless integrated network sensors (WINS)

David C. Gelvin; Lewis Girod; William J. Kaiser; William M. Merrill; Fredric Newberg; Gregory J. Pottie; Anton I. Sipos; Sandeep Vardhan


Archive | 2000

Method for collecting and processing data using internetworked wireless integrated network sensors (WINS)

David C. Gelvin; Lewis Girod; William J. Kaiser; William M. Merrill; Fredric Newberg; Gregory J. Pottie; Anton I. Sipos; Sandeep Vardhan


Archive | 2000

Apparatus for vehicle internetworks

David C. Gelvin; Lewis Girod; William J. Kaiser; Fredric Newberg; Gregory J. Pottie


Archive | 2000

Method for remote access of vehicle components

David C. Gelvin; Lewis Girod; William J. Kaiser; Fredric Newberg; Gregory J. Pottie

Collaboration


Dive into the Fredric Newberg's collaboration.

Top Co-Authors

Avatar

Lewis Girod

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy Elson

University of California

View shared research outputs
Top Co-Authors

Avatar

Scott Valoff

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Asada

University of California

View shared research outputs
Top Co-Authors

Avatar

Greg Pottie

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge