Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik Bäckhed is active.

Publication


Featured researches published by Fredrik Bäckhed.


Nature | 2012

Functional interactions between the gut microbiota and host metabolism.

Valentina Tremaroli; Fredrik Bäckhed

The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mechanisms underlying the resistance to diet-induced obesity in germ-free mice

Fredrik Bäckhed; Jill K. Manchester; Clay F. Semenkovich; Jeffrey I. Gordon

The trillions of microbes that colonize our adult intestines function collectively as a metabolic organ that communicates with, and complements, our own human metabolic apparatus. Given the worldwide epidemic in obesity, there is interest in how interactions between human and microbial metabolomes may affect our energy balance. Here we report that, in contrast to mice with a gut microbiota, germ-free (GF) animals are protected against the obesity that develops after consuming a Western-style, high-fat, sugar-rich diet. Their persistently lean phenotype is associated with increased skeletal muscle and liver levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream targets involved in fatty acid oxidation (acetylCoA carboxylase; carnitine-palmitoyltransferase). Moreover, GF knockout mice lacking fasting-induced adipose factor (Fiaf), a circulating lipoprotein lipase inhibitor whose expression is normally selectively suppressed in the gut epithelium by the microbiota, are not protected from diet-induced obesity. Although GF Fiaf−/− animals exhibit similar levels of phosphorylated AMPK as their wild-type littermates in liver and gastrocnemius muscle, they have reduced expression of genes encoding the peroxisomal proliferator-activated receptor coactivator (Pgc-1α) and enzymes involved in fatty acid oxidation. Thus, GF animals are protected from diet-induced obesity by two complementary but independent mechanisms that result in increased fatty acid metabolism: (i) elevated levels of Fiaf, which induces Pgc-1α; and (ii) increased AMPK activity. Together, these findings support the notion that the gut microbiota can influence both sides of the energy balance equation, and underscore the importance of considering our metabolome in a supraorganismal context.


Cell Host & Microbe | 2008

Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome

Peter J. Turnbaugh; Fredrik Bäckhed; Lucinda Fulton; Jeffrey I. Gordon

We have investigated the interrelationship between diet, gut microbial ecology, and energy balance using a mouse model of obesity produced by consumption of a prototypic Western diet. Diet-induced obesity (DIO) produced a bloom in a single uncultured clade within the Mollicutes class of the Firmicutes, which was diminished by subsequent dietary manipulations that limit weight gain. Microbiota transplantation from mice with DIO to lean germ-free recipients promoted greater fat deposition than transplants from lean donors. Metagenomic and biochemical analysis of the gut microbiome together with sequencing and metabolic reconstructions of a related human gut-associated Mollicute (Eubacterium dolichum) revealed features that may provide a competitive advantage to members of the bloom in the Western diet nutrient milieu, including import and processing of simple sugars. Our study illustrates how combining comparative metagenomics with gnotobiotic mouse models and specific dietary manipulations can disclose the niches of previously uncharacterized members of the gut microbiota.


Nature | 2013

Gut metagenome in European women with normal, impaired and diabetic glucose control

Fredrik H. Karlsson; Valentina Tremaroli; Intawat Nookaew; Göran Bergström; Carl Johan Behre; Björn Fagerberg; Jens Nielsen; Fredrik Bäckhed

Type 2 diabetes (T2D) is a result of complex gene–environment interactions, and several risk factors have been identified, including age, family history, diet, sedentary lifestyle and obesity. Statistical models that combine known risk factors for T2D can partly identify individuals at high risk of developing the disease. However, these studies have so far indicated that human genetics contributes little to the models, whereas socio-demographic and environmental factors have greater influence. Recent evidence suggests the importance of the gut microbiota as an environmental factor, and an altered gut microbiota has been linked to metabolic diseases including obesity, diabetes and cardiovascular disease. Here we use shotgun sequencing to characterize the faecal metagenome of 145 European women with normal, impaired or diabetic glucose control. We observe compositional and functional alterations in the metagenomes of women with T2D, and develop a mathematical model based on metagenomic profiles that identified T2D with high accuracy. We applied this model to women with impaired glucose tolerance, and show that it can identify women who have a diabetes-like metabolism. Furthermore, glucose control and medication were unlikely to have major confounding effects. We also applied our model to a recently described Chinese cohort and show that the discriminant metagenomic markers for T2D differ between the European and Chinese cohorts. Therefore, metagenomic predictive tools for T2D should be specific for the age and geographical location of the populations studied.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.

Buck S. Samuel; Abdullah Shaito; Toshiyuki Motoike; Federico E. Rey; Fredrik Bäckhed; Jill K. Manchester; Robert E. Hammer; S. Clay Williams; Jan R. Crowley; Masashi Yanagisawa; Jeffrey I. Gordon

The distal human intestine harbors trillions of microbes that allow us to extract calories from otherwise indigestible dietary polysaccharides. The products of polysaccharide fermentation include short-chain fatty acids that are ligands for Gpr41, a G protein-coupled receptor expressed by a subset of enteroendocrine cells in the gut epithelium. To examine the contribution of Gpr41 to energy balance, we compared Gpr41−/− and Gpr41+/+ mice that were either conventionally-raised with a complete gut microbiota or were reared germ-free and then cocolonized as young adults with two prominent members of the human distal gut microbial community: the saccharolytic bacterium, Bacteroides thetaiotaomicron and the methanogenic archaeon, Methanobrevibacter smithii. Both conventionally-raised and gnotobiotic Gpr41−/− mice colonized with the model fermentative community are significantly leaner and weigh less than their WT (+/+) littermates, despite similar levels of chow consumption. These differences are not evident when germ-free WT and germ-free Gpr41 knockout animals are compared. Functional genomic, biochemical, and physiologic studies of germ-free and cocolonized Gpr41−/− and +/+ littermates disclosed that Gpr41-deficiency is associated with reduced expression of PYY, an enteroendocrine cell-derived hormone that normally inhibits gut motility, increased intestinal transit rate, and reduced harvest of energy (short-chain fatty acids) from the diet. These results reveal that Gpr41 is a regulator of host energy balance through effects that are dependent upon the gut microbiota.


PLOS ONE | 2008

Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing

Anders F. Andersson; Mathilda Lindberg; Hedvig E. Jakobsson; Fredrik Bäckhed; Pål Nyrén; Lars Engstrand

Humans host complex microbial communities believed to contribute to health maintenance and, when in imbalance, to the development of diseases. Determining the microbial composition in patients and healthy controls may thus provide novel therapeutic targets. For this purpose, high-throughput, cost-effective methods for microbiota characterization are needed. We have employed 454-pyrosequencing of a hyper-variable region of the 16S rRNA gene in combination with sample-specific barcode sequences which enables parallel in-depth analysis of hundreds of samples with limited sample processing. In silico modeling demonstrated that the method correctly describes microbial communities down to phylotypes below the genus level. Here we applied the technique to analyze microbial communities in throat, stomach and fecal samples. Our results demonstrate the applicability of barcoded pyrosequencing as a high-throughput method for comparative microbial ecology.


Cell Metabolism | 2013

Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist

Sama Islam Sayin; Annika Wahlström; Jenny Felin; Sirkku Jäntti; Hanns-Ulrich Marschall; Krister Bamberg; Bo Angelin; Tuulia Hyötyläinen; Matej Orešič; Fredrik Bäckhed

Bile acids are synthesized from cholesterol in the liver and further metabolized by the gut microbiota into secondary bile acids. Bile acid synthesis is under negative feedback control through activation of the nuclear receptor farnesoid X receptor (FXR) in the ileum and liver. Here we profiled the bile acid composition throughout the enterohepatic system in germ-free (GF) and conventionally raised (CONV-R) mice. We confirmed a dramatic reduction in muricholic acid, but not cholic acid, levels in CONV-R mice. Rederivation of Fxr-deficient mice as GF demonstrated that the gut microbiota regulated expression of fibroblast growth factor 15 in the ileum and cholesterol 7α-hydroxylase (CYP7A1) in the liver by FXR-dependent mechanisms. Importantly, we identified tauro-conjugated beta- and alpha-muricholic acids as FXR antagonists. These studies suggest that the gut microbiota not only regulates secondary bile acid metabolism but also inhibits bile acid synthesis in the liver by alleviating FXR inhibition in the ileum.


Cell | 2012

Host remodeling of the gut microbiome and metabolic changes during pregnancy.

Omry Koren; Julia K. Goodrich; Tyler C. Cullender; Aymé Spor; Kirsi Laitinen; Helene Kling Bäckhed; Antonio Gonzalez; Jeffrey J. Werner; Largus T. Angenent; Rob Knight; Fredrik Bäckhed; Erika Isolauri; Seppo Salminen; Ruth E. Ley

Many of the immune and metabolic changes occurring during normal pregnancy also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in nonpregnant hosts. Here, to explore their role in pregnancy, we characterized fecal bacteria of 91 pregnant women of varying prepregnancy BMIs and gestational diabetes status and their infants. Similarities between infant-mother microbiotas increased with childrens age, and the infant microbiota was unaffected by mothers health status. Gut microbiota changed dramatically from first (T1) to third (T3) trimesters, with vast expansion of diversity between mothers, an overall increase in Proteobacteria and Actinobacteria, and reduced richness. T3 stool showed strongest signs of inflammation and energy loss; however, microbiome gene repertoires were constant between trimesters. When transferred to germ-free mice, T3 microbiota induced greater adiposity and insulin insensitivity compared to T1. Our findings indicate that host-microbial interactions that impact host metabolism can occur and may be beneficial in pregnancy.


Cell Host & Microbe | 2015

Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life.

Fredrik Bäckhed; Yangqing Peng; Qiang Feng; Huijue Jia; Petia Kovatcheva-Datchary; Yin Li; Yan Xia; Hailiang Xie; Huanzi Zhong; Muhammad Tanweer Khan; Jianfeng Zhang; Junhua Li; Liang Xiao; Jumana Y. Al-Aama; Dongya Zhang; Ying Shiuan Lee; Dorota Ewa Kotowska; Camilla Colding; Valentina Tremaroli; Ye Yin; Stefan Bergman; Xun Xu; Lise Madsen; Karsten Kristiansen; Jovanna Dahlgren; Jun Wang

The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first year of life and assessed the impact of mode of delivery and feeding on its establishment. In contrast to vaginally delivered infants, the gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers. Nutrition had a major impact on early microbiota composition and function, with cessation of breast-feeding, rather than introduction of solid food, being required for maturation into an adult-like microbiota. Microbiota composition and ecological network had distinctive features at each sampled stage, in accordance with functional maturation of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life.


Cell | 2014

Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits

Filipe De Vadder; Petia Kovatcheva-Datchary; D. Goncalves; J. Vinera; Carine Zitoun; A. Duchampt; Fredrik Bäckhed; Gilles Mithieux

Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.

Collaboration


Dive into the Fredrik Bäckhed's collaboration.

Top Co-Authors

Avatar

Valentina Tremaroli

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrice D. Cani

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jeffrey I. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Felix Sommer

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Jens Nielsen

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Caesar

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Agneta Richter-Dahlfors

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge