Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik Charpentier Ljungqvist is active.

Publication


Featured researches published by Fredrik Charpentier Ljungqvist.


Geografiska Annaler Series A-physical Geography | 2010

A NEW RECONSTRUCTION OF TEMPERATURE VARIABILITY IN THE EXTRA‐TROPICAL NORTHERN HEMISPHERE DURING THE LAST TWO MILLENNIA

Fredrik Charpentier Ljungqvist

Abstract. A new temperature reconstruction with decadal resolution, covering the last two millennia, is presented for the extratropical Northern Hemisphere (90–30°N), utilizing many palaeo‐temperature proxy records never previously included in any large‐scale temperature reconstruction. The amplitude of the reconstructed temperature variability on centennial time‐scales exceeds 0.6°C. This reconstruction is the first to show a distinct Roman Warm Period c. ad 1–300, reaching up to the 1961–1990 mean temperature level, followed by the Dark Age Cold Period c. ad 300–800. The Medieval Warm Period is seen c. ad 800–1300 and the Little Ice Age is clearly visible c. ad 1300–1900, followed by a rapid temperature increase in the twentieth century. The highest average temperatures in the reconstruction are encountered in the mid to late tenth century and the lowest in the late seventeenth century. Decadal mean temperatures seem to have reached or exceeded the 1961–1990 mean temperature level during substantial parts of the Roman Warm Period and the Medieval Warm Period. The temperature of the last two decades, however, is possibly higher than during any previous time in the past two millennia, although this is only seen in the instrumental temperature data and not in the multi‐proxy reconstruction itself. Our temperature reconstruction agrees well with the reconstructions by Moberg et al. (2005) and Mann et al. (2008) with regard to the amplitude of the variability as well as the timing of warm and cold periods, except for the period c. ad 300–800, despite significant differences in both data coverage and methodology.


Environmental Research Letters | 2016

European summer temperatures since Roman times

Jürg Luterbacher; Johannes P. Werner; Jason E. Smerdon; Laura Fernández-Donado; Fidel González-Rouco; David Barriopedro; Fredrik Charpentier Ljungqvist; Ulf Büntgen; E. Zorita; S. Wagner; Jan Esper; Danny McCarroll; Andrea Toreti; David Frank; Johann H. Jungclaus; Mariano Barriendos; Chiara Bertolin; Oliver Bothe; Rudolf Brázdil; Dario Camuffo; Petr Dobrovolný; Mary Gagen; E. García-Bustamante; Quansheng Ge; Juan J. Gomez-Navarro; Joël Guiot; Zhixin Hao; Gabi Hegerl; Karin Holmgren; V.V. Klimenko

The spatial context is criticalwhen assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatiotemporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951-2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986-2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850-2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.


Nature | 2016

Northern Hemisphere hydroclimate variability over the past twelve centuries

Fredrik Charpentier Ljungqvist; Paul J. Krusic; Hanna S. Sundqvist; Eduardo Zorita; Gudrun Brattström; David Frank

Accurate modelling and prediction of the local to continental-scale hydroclimate response to global warming is essential given the strong impact of hydroclimate on ecosystem functioning, crop yields, water resources, and economic security. However, uncertainty in hydroclimate projections remains large, in part due to the short length of instrumental measurements available with which to assess climate models. Here we present a spatial reconstruction of hydroclimate variability over the past twelve centuries across the Northern Hemisphere derived from a network of 196 at least millennium-long proxy records. We use this reconstruction to place recent hydrological changes and future precipitation scenarios in a long-term context of spatially resolved and temporally persistent hydroclimate patterns. We find a larger percentage of land area with relatively wetter conditions in the ninth to eleventh and the twentieth centuries, whereas drier conditions are more widespread between the twelfth and nineteenth centuries. Our reconstruction reveals that prominent seesaw patterns of alternating moisture regimes observed in instrumental data across the Mediterranean, western USA, and China have operated consistently over the past twelve centuries. Using an updated compilation of 128 temperature proxy records, we assess the relationship between the reconstructed centennial-scale Northern Hemisphere hydroclimate and temperature variability. Even though dry and wet conditions occurred over extensive areas under both warm and cold climate regimes, a statistically significant co-variability of hydroclimate and temperature is evident for particular regions. We compare the reconstructed hydroclimate anomalies with coupled atmosphere–ocean general circulation model simulations and find reasonable agreement during pre-industrial times. However, the intensification of the twentieth-century-mean hydroclimate anomalies in the simulations, as compared to previous centuries, is not supported by our new multi-proxy reconstruction. This finding suggests that much work remains before we can model hydroclimate variability accurately, and highlights the importance of using palaeoclimate data to place recent and predicted hydroclimate changes in a millennium-long context.


Journal of Climate | 2011

Reconstruction of the Extratropical NH Mean Temperature over the Last Millennium with a Method that Preserves Low-Frequency Variability

Bo Christiansen; Fredrik Charpentier Ljungqvist

AbstractA new multiproxy reconstruction of the Northern Hemisphere extratropical mean temperature over the last millennium is presented. The reconstruction is performed with a novel method designed to avoid the underestimation of low-frequency variability that has been a general problem for regression-based reconstruction methods. The disadvantage of this method is an exaggerated high-frequency variability. The reconstruction is based on a set of 40 proxies of annual to decadal resolution that have been shown to relate to the local temperature. The new reconstruction shows a very cold Little Ice Age centered around the 17th century with a cold extremum (for 50-yr smoothing) of about 1.1 K below the temperature of the calibration period, AD 1880–1960. This cooling is about twice as large as corresponding numbers reported by most other reconstructions. In the beginning of the millennium the new reconstruction shows small anomalies in agreement with previous studies. However, the new temperature reconstructi...


Geografiska Annaler Series A-physical Geography | 2009

Temperature proxy records covering the last two millennia: a tabular and visual overview

Fredrik Charpentier Ljungqvist

Abstract. Proxy data are our only source of knowledge of temperature variability in the period prior to instrumental temperature measurements. Until recently, very few quantitative palaeotemperature records extended back a millennium or more, but the number is now increasing. Here, the first systematic survey is presented, with graphic representations, of most quantitative temperature proxy data records covering the last two millennia that have been published in the peer‐reviewed literature. In total, 71 series are presented together with basic essential information on each record. This overview will hopefully assist future palaeoclimatic research by facilitating an orientation among available palaeotemperature records and thus reduce the risk of missing less well‐known proxy series. The records show an amplitude between maximum and minimum temperatures during the past two millennia on centennial timescales ranging from c. 0.5 to 4°C and averaging c. 1.5–2°C for both high and low latitudes, although these variations are not always occurring synchronous. Both the Medieval Warm Period, the Little Ice Age and the 20th century warming are clearly visible in most records, whereas the Roman Warm Period and the Dark Age Cold Period are less clearly discernible.


Climate Dynamics | 2014

Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia

Bao Yang; Shuyuan Kang; Fredrik Charpentier Ljungqvist; Minhui He; Yan Zhao; Chun Qin

The northern fringe of the Asian summer monsoon region (NASM) in China refers to the most northwestern extent of the Asian summer monsoon. Understanding the characteristics and underlying mechanisms of drought variability at long and short time-scales in the NASM region is of great importance, because present and future water shortages are of great concern. Here, we used newly developed and existing tree-ring, historical documentary and instrumental data available for the region to identify spatial and temporal patterns, and possible mechanisms of drought variability, over the past two millennia. We found that drought variations were roughly consistent in the western (the Qilian Mountains and Hexi Corridor) and eastern (the Great Bend of the Yellow River, referred to as GBYR) parts of the NASM on decadal to centennial timescales. We also identified the spatial extent of typical multi-decadal GBYR drought events based on historical dryness/wetness data and the Monsoon Asia Drought Atlas. It was found that the two periods of drought, in AD 1625–1644 and 1975–1999, exhibited similar patterns: specifically, a wet west and a dry east in the NASM. Spatial characteristics of wetness and dryness were also broadly similar over these two periods, such that when drought occurred in the Karakoram Mountains, western Tianshan Mountains, the Pamirs, Mongolia, most of East Asia, the eastern Himalayas and Southeast Asia, a wet climate dominated in most parts of the Indian subcontinent. We suggest that the warm temperature anomalies in the tropical Pacific might have been mainly responsible for the recent 1975–1999 drought. Possible causes of the drought of 1625–1644 were the combined effects of the weakened Asian summer monsoon and an associated southward shift of the Pacific Intertropical Convergence Zone. These changes occurred due to a combination of Tibetan Plateau cooling together with more general Northern Hemisphere cooling, rather than being solely due to changes in the sea surface temperature of the tropical Pacific. Our results provide a benchmark for comparing and validating paleo-simulations from general circulation model of the variability of the Asian summer monsoon at decadal to centennial timescales.


Proceedings of the National Academy of Sciences of the United States of America | 2017

New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data

Bao Yang; Minhui He; Vladimir V. Shishov; Ivan Tychkov; Eugene A. Vaganov; Sergio Rossi; Fredrik Charpentier Ljungqvist; Achim Bräuning; Jussi Grießinger

Significance Inconsistent results regarding the rate of change in spring phenology and its relation to climatic drivers on the Tibetan Plateau have been obtained in the past. We introduce and describe here an innovative approach based on tree-ring data, which converts daily weather data into indices of the start (and end) of the growing season. This method provides a unique long-term record of vegetation phenological variability over the period 1960–2014. This approach could further be extended to other forested regions of the world. Scaling up the analysis would provide additional information on phenological responses of terrestrial ecosystems to the ongoing climate change across the Northern Hemisphere. Phenological responses of vegetation to climate, in particular to the ongoing warming trend, have received much attention. However, divergent results from the analyses of remote sensing data have been obtained for the Tibetan Plateau (TP), the world’s largest high-elevation region. This study provides a perspective on vegetation phenology shifts during 1960–2014, gained using an innovative approach based on a well-validated, process-based, tree-ring growth model that is independent of temporal changes in technical properties and image quality of remote sensing products. Twenty composite site chronologies were analyzed, comprising about 3,000 trees from forested areas across the TP. We found that the start of the growing season (SOS) has advanced, on average, by 0.28 d/y over the period 1960–2014. The end of the growing season (EOS) has been delayed, by an estimated 0.33 d/y during 1982–2014. No significant changes in SOS or EOS were observed during 1960–1981. April–June and August–September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1 °C in April–June minimum temperature shifted the dates of xylem phenology by 6 to 7 d, lengthening the period of tree-ring formation. This study extends the chronology of TP phenology farther back in time and reconciles the disparate views on SOS derived from remote sensing data. Scaling up this analysis may improve understanding of climate change effects and related phenological and plant productivity on a global scale.


Journal of Climate | 2015

Tree-Ring Amplification of the Early Nineteenth-Century Summer Cooling in Central Europe

Ulf Büntgen; Miroslav Trnka; Paul J. Krusic; Tomáš Kyncl; Josef Kyncl; Jürg Luterbacher; Eduardo Zorita; Fredrik Charpentier Ljungqvist; Ingeborg Auer; Oliver Konter; Lea Schneider; Willy Tegel; Petr Štěpánek; Stefan Brönnimann; Lena Hellmann; Daniel Nievergelt; Jan Esper

Annually resolved and absolutely dated tree-ring chronologies are the most important proxy archives to reconstruct climate variability over centuries to millennia. However, the suitability of tree- ...


Nature Geoscience | 2013

Continental-Scale Temperature Variability during the Past Two Millennia: Supplementary Information

Moinuddin Ahmed; Brendan M. Buckley; M. Braida; H.P. Borgaonkar; Asfawossen Asrat; Edward R. Cook; Ulf Büntgen; Brian M. Chase; Duncan A. Christie; Mark A. J. Curran; Henry F. Diaz; Jan Esper; Ze-Xin Fan; Narayan P. Gaire; Quansheng Ge; Joëlle Gergis; J. Fidel Gonzalez-Rouco; Hugues Goosse; Stefan W. Grab; Nicholas E. Graham; Rochelle Graham; Martin Grosjean; Sami Hanhijärvi; Darrell S. Kaufman; Thorsten Kiefer; Katsuhiko Kimura; Atte Korhola; Paul J. Krusic; Antonio Lara; Anne-Marie Lézine

Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.


Reviews of Geophysics | 2017

Challenges and perspectives for large‐scale temperature reconstructions of the past two millennia

Bo Christiansen; Fredrik Charpentier Ljungqvist

Knowledge of the temperature variability during the last one to two millennia is important for providing a perspective to present-day climate excursions, for assessing the sensitivity of the climate to different forcings, and for providing a test bed for climate models. Since systematic instrumental temperature records only extend back to the nineteenth century, such knowledge mainly relies on climate-sensitive proxy data. Here we critically assess some of the many challenges related to large-scale multiproxy temperature reconstructions. We begin with a review of available large-scale temperature reconstructions, focusing on the differences in low-frequency variability and the response to natural forcings such as major volcanic eruptions and changes in total solar irradiance. Then, we discuss different proxy selection strategies, review previously used reconstruction methods, and discuss their ability to reconstruct the amplitude of the low-frequency variability. To shed additional light on the challenges of large-scale reconstructions, we investigate the spatial and temporal correlation structures in the observed temperature field and discuss the implications of these correlation structures regarding the required number and positions of proxies. We demonstrate how the unavoidable uncertainty related to noisy proxies will show up as bias and variance in the reconstruction and that the partition between these forms of errors depends on the reconstruction method. Pseudo-proxy experiments are conducted to further discuss the influence of noise and the requirements regarding the geographical location and number of proxies necessary for reliably reconstructing the low-frequency variability. We conclude with recommendations for future large-scale temperature reconstructions.

Collaboration


Dive into the Fredrik Charpentier Ljungqvist's collaboration.

Top Co-Authors

Avatar

Ulf Büntgen

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bao Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes P. Werner

Bjerknes Centre for Climate Research

View shared research outputs
Top Co-Authors

Avatar

Quansheng Ge

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ze-Xin Fan

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Christiansen

Danish Meteorological Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge