Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik Ek is active.

Publication


Featured researches published by Fredrik Ek.


Tetrahedron | 2003

Synthesis of fused tetrazole- and imidazole derivatives via iodocyclization

Fredrik Ek; Lars-Goeran Wistrand; Torbjoern Frejd

The possibility to prepare fused tetrazole- and imidazole derivatives by iodocyclization in moderate to excellent yields is demonstrated. In some examples the cyclizations were not following Baldwins rules entirely, i.e. exo-selectivity. Nucleophilic substitution of the formed iodides gave different results depending on the hardness of the nucleophile. Thus, elimination of the iodide could be a problem but a substitution reaction with ethyl potassium xanthate and a radical reaction using acrylonitrile were tolerated. In addition, we showed that it is possible to selectively use three iodo substituents individually in one of the fused imidazole derivatives.


Journal of Medicinal Chemistry | 2009

Synthesis and Evaluation of Dibenzothiazepines: A Novel Class of Selective Cannabinoid-1 Receptor Inverse Agonists

Hanna Pettersson; Anne Bulow; Fredrik Ek; Jacob Jensen; Lars Korsgaard Ottesen; Alma Fejzic; Jian-Nong Ma; Andria L. Del Tredici; Erika A. Currier; Luis R. Gardell; Ali Tabatabaei; Darren Craig; Krista McFarland; Thomas R. Ott; Fabrice Piu; Ethan S. Burstein; Roger Olsson

A novel class of CB1 inverse agonists was discovered. To efficiently establish structure-activity relationships (SARs), new synthetic methodologies amenable for parallel synthesis were developed. The compounds were evaluated in a mammalian cell-based functional assay and in radioligand binding assays expressing recombinant human cannabinoid receptors (CB1 and CB2). In general, all of the compounds exhibited high binding selectivity at CB1 vs CB2 and the general SAR revealed a lead compound 11-(4-chlorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12e) which showed excellent in vivo activity in pharmacodynamic models related to CB1 receptor activity. The low solubility that hampered the development of 12e was solved leading to a potential preclinical candidate 11-(3-chloro-4-fluorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12h).


Scientific Reports | 2015

Using visual lateralization to model learning and memory in zebrafish larvae.

Madelene Åberg Andersson; Fredrik Ek; Roger Olsson

Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models.


ACS Chemical Neuroscience | 2016

Behavioral Analysis of Dopaminergic Activation in Zebrafish and Rats Reveals Similar Phenotypes

Fredrik Ek; Marcus Malo; Madelene Åberg Andersson; Christoffer Wedding; Joel Kronborg; Peder Svensson; Susanna Waters; Per Petersson; Roger Olsson

Zebrafish is emerging as a complement to mammals in behavioral studies; however, there is a lack of comparative studies with rodents and humans to establish the zebrafish as a predictive translational model. Here we present a detailed phenotype evaluation of zebrafish larvae, measuring 300-3000 variables and analyzing them using multivariate analysis to identify the most important ones for further evaluations. The dopamine agonist apomorphine has previously been shown to have a complex U-shaped dose-response relationship in the variable distance traveled. In this study, we focused on breaking down distance traveled into more detailed behavioral phenotypes for both zebrafish and rats and identified in the multivariate analysis low and high dose phenotypes with characteristic behavioral features. Further analysis of single parameters also identified an increased activity at the lowest concentration indicative of a U-shaped dose-response. Apomorphine increased the distance of each swim movement (bout) at both high and low doses, but the underlying behavior of this increase is different; at high dose, both bout duration and frequency increased whereas bout max speed was higher at low dose. Larvae also displayed differences in place preference. The low dose phenotype spent more time in the center, indicative of an anxiolytic effect, while the high-dose phenotype had a wall preference. These dose-dependent effects corroborated findings in a parallel rat study and previous observations in humans. The translational value of pharmacological zebrafish studies was further evaluated by comparing the amino acid sequence of the dopamine receptors (D1-D4), between zebrafish, rats and humans. Humans and zebrafish share 100% of the amino acids in the binding site for D1 and D3 whereas D2 and D4 receptors share 85-95%. Molecular modeling of dopamine D2 and D4 receptors indicated that nonconserved amino acids have limited influence on important ligand-receptor interactions.


Scientific Reports | 2016

Small molecules increase direct neural conversion of human fibroblasts

Ulrich Pfisterer; Fredrik Ek; Stefan Lang; Shamit Soneji; Roger Olsson; Malin Parmar

The generation of human induced neurons (hiNs) via exogenous delivery of neural transcription factors represents a novel technique to obtain disease and patient specific neurons. These cells have the potential to be used for disease modeling, diagnostics and drug screening, and also to be further developed for brain repair. In the present study, we utilized hiNs to develop an unbiased screening assay for small molecules that increase the conversion efficiency. Using this assay, we screened 307 compounds from five annotated libraries and identified six compounds that were very potent in potentiating the reprogramming process. When combined in an optimal combination and dose, these compounds increased the reprogramming efficiency of human fibroblasts more than 6-fold. Global gene expression and CellNet analysis at different timepoints during the reprogramming process revealed that neuron-specific genes and gene regulatory networks (GRNs) became progressively more activated while converting cells shut down fibroblast-specific GRNs. Further bioinformatics analysis revealed that the addition of the six compound resulted in the accelerated upregulation of a subset of neuronal genes, and also increased expression of genes associated with transcriptional activity and mediation of cellular stress response.


ACS Chemical Neuroscience | 2016

An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism.

Karin Hellman; Peter Aadal Nielsen; Fredrik Ek; Roger Olsson

The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites, respectively, were identified. The unbound drug fraction of clozapine, NDMC, carbamazepine, and risperidone was analyzed. In addition, coadministration of drugs with verapamil or fluvoxamine was performed to evaluate drug-drug interactions in all setups. All findings correlated well with the data in the literature for mammals except for the stated fact that CNO is a highly blood-brain barrier permeant compound. Overall, the experiments indicated that invertebrates might be useful for screening of blood-brain barrier permeation, efflux, metabolism, and analysis of the unbound fraction of drugs in the brain in early drug discovery.


Scientific Reports | 2017

Action sequencing in the spontaneous swimming behavior of zebrafish larvae - implications for drug development

Tobias Palmér; Fredrik Ek; Olof Enqvist; Roger Olsson; Kalle Åström; Per Petersson

All motile organisms need to organize their motor output to obtain functional goals. In vertebrates, natural behaviors are generally composed of a relatively large set of motor components which in turn are combined into a rich repertoire of complex actions. It is therefore an experimental challenge to investigate the organizational principles of natural behaviors. Using the relatively simple locomotion pattern of 10 days old zebrafish larvae we have here characterized the basic organizational principles governing the swimming behavior. Our results show that transitions between different behavioral states can be described by a model combining a stochastic component with a control signal. By dividing swimming bouts into a limited number of categories, we show that similar types of swimming behavior as well as stand-stills between bouts were temporally clustered, indicating a basic level of action sequencing. Finally, we show that pharmacological manipulations known to induce alterations in the organization of motor behavior in mammals, mainly through basal ganglia interactions, have related effects in zebrafish larvae. This latter finding may be of specific relevance to the field of drug development given the growing importance of zebrafish larvae in phenotypic screening for novel drug candidates acting on central nervous system targets.


BMC Cancer | 2016

Identification of V-ATPase as a molecular sensor of SOX11-levels and potential therapeutic target for mantle cell lymphoma

Venera Kuci Emruli; Roger Olsson; Fredrik Ek; Sara Ek

BackgroundMantle cell lymphoma (MCL) is an aggressive disease with short median survival. Molecularly, MCL is defined by the t(11;14) translocation leading to overexpression of the CCND1 gene. However, recent data show that the neural transcription factor SOX11 is a disease defining antigen and several involved signaling pathways have been pin-pointed, among others the Wnt/β-catenin pathway that is of importance for proliferation in MCL. Therefore, we evaluated a compound library focused on the Wnt pathway with the aim of identifying Wnt-related targets that regulate growth and survival in MCL, with particular focus on SOX11-dependent growth regulation.MethodsAn inducible SOX11 knock-down system was used to functionally screen a library of compounds (n = 75) targeting the Wnt signaling pathway. A functionally interesting target, vacuolar-type H+-ATPase (V-ATPase), was further evaluated by western blot, siRNA-mediated gene silencing, immunofluorescence, and flow cytometry.ResultsWe show that 15 out of 75 compounds targeting the Wnt pathway reduce proliferation in all three MCL cell lines tested. Furthermore, three substances targeting two different targets (V-ATPase and Dkk1) showed SOX11-dependent activity. Further validation analyses were focused on V-ATPase and showed that two independent V-ATPase inhibitors (bafilomycin A1 and concanamycin A) are sensitive to SOX11 levels, causing reduced anti-proliferative response in SOX11 low cells. We further show, using fluorescence imaging and flow cytometry, that V-ATPase is mainly localized to the plasma membrane in primary and MCL cell lines.ConclusionsWe show that SOX11 status affect V-ATPase dependent pathways, and thus may be involved in regulating pH in intracellular and extracellular compartments. The plasma membrane localization of V-ATPase indicates that pH regulation of the immediate extracellular compartment may be of importance for receptor functionality and potentially invasiveness in vivo.


BMC Cancer | 2018

Bortezomib prevents cytarabine resistance in MCL, which is characterized by down-regulation of dCK and up-regulation of SPIB resulting in high NF-κB activity

Catja Freiburghaus; Venera Kuci Emruli; Angelica Johansson; Christian Winther Eskelund; Kirsten Grønbæk; Roger Olsson; Fredrik Ek; Mats Jerkeman; Sara Ek

BackgroundThe addition of high-dose cytarabine to the treatment of mantle cell lymphoma (MCL) has significantly prolonged survival of patients, but relapses are common and are normally associated with increased resistance. To elucidate the mechanisms responsible for cytarabine resistance, and to create a tool for drug discovery investigations, we established a unique and molecularly reproducible cytarabine resistant model from the Z138 MCL cell line.MethodsEffects of different substances on cytarabine-sensitive and resistant cells were evaluated by assessment of cell proliferation using [methyl-14C]-thymidine incorporation and molecular changes were investigated by protein and gene expression analyses.ResultsGene expression profiling revealed that major transcriptional changes occur during the initial phase of adaptation to cellular growth in cytarabine containing media, and only few key genes, including SPIB, are deregulated upon the later development of resistance. Resistance was shown to be mediated by down-regulation of the deoxycytidine kinase (dCK) protein, responsible for activation of nucleoside analogue prodrugs. This key event, emphasized by cross-resistance to other nucleoside analogues, did not only effect resistance but also levels of SPIB and NF-κB, as assessed through forced overexpression in resistant cells. Thus, for the first time we show that regulation of drug resistance through prevention of conversion of pro-drug into active drug are closely linked to increased proliferation and resistance to apoptosis in MCL. Using drug libraries, we identify several substances with growth reducing effect on cytarabine resistant cells. We further hypothesized that co-treatment with bortezomib could prevent resistance development. This was confirmed and show that the dCK levels are retained upon co-treatment, indicating a clinical use for bortezomib treatment in combination with cytarabine to avoid development of resistance. The possibility to predict cytarabine resistance in diagnostic samples was assessed, but analysis show that a majority of patients have moderate to high expression of dCK at diagnosis, corresponding well to the initial clinical response to cytarabine treatment.ConclusionWe show that cytarabine resistance potentially can be avoided or at least delayed through co-treatment with bortezomib, and that down-regulation of dCK and up-regulation of SPIB and NF-κB are the main molecular events driving cytarabine resistance development.


Zebrafish | 2017

Osmotic Concentration of Zebrafish (Danio rerio) Body Fluids Is Lower in Larvae than in Adults

Tomasz M Kozłowski; Mikael Jönsson; Fredrik Ek; Roger Olsson; Ronald H. H. Kröger

We intended to perform optical and structural measurements on larval zebrafish eyes at 5 days post fertilization, that is, the earliest age at which zebrafish show visually guided behavior. However, excised larval crystalline lenses deteriorated quickly if immersed in a medium that gives good results with adult lenses from a variety of fish species. We suspected that the larvae have body fluids of lower osmolality and tested a medium with 240 mOsm, which is 75% of the established adult value of 320 mOsm. The optical quality of freshly excised and immersed lenses was used to judge the osmotic matches. In addition, we tested how well the shape of the eye is preserved in fixatives of different osmolalities. In both cases, 240 mOsm produced the best results. Immersed lenses performed better and the fixed eyes had a more natural shape. Our findings indicate that zebrafish body fluids have lower osmolality in larvae than in adults. This is probably due to an unfavorable body surface-to-volume ratio and incompletely developed regulatory mechanisms. Body fluid osmolality deviating from the adult value has to be taken into account in optical and histological work.

Collaboration


Dive into the Fredrik Ek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge