Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik Haglind is active.

Publication


Featured researches published by Fredrik Haglind.


Aeronautical Journal | 2006

Potential of reducing the environmental impact of aviation by using hydrogen Part I: Background, prospects and challenges

Fredrik Haglind; Anders Hasselrot; Riti Singh

The main objective of the paper is to evaluate the potential of reducing the environmental impact of civil subsonic aviation by using hydrogen fuel. The paper is divided into three parts of which this is Part I, where the background, prospects and challenges of introducing an alternative fuel in aviation are outlined. In Part II the aero engine design when using hydrogen is covered, and in Part III the subjects of optimum cruising altitude and airport implications of introducing liquid hydrogen-fuelled aircraft are raised. Looking at the prospect of alternative fuels, synthetic kerosene produced from biomass turns out to be feasible and offers environmental benefits in the short run, whereas hydrogen seems to be the more attractive alternative in the long run. Powering aero engines and aircraft with hydrogen has been done successfully on a number of occasions in the past. Realising this technology change for a fleet of aircraft poses formidable challenges regarding technical development, energy requirement for producing hydrogen, handling, aircraft design and making liquid hydrogen economically compatible with kerosene.


ASME 2012 International Mechanical Engineering Congress and Exposition | 2012

Waste heat recovery for offshore applications

Leonardo Pierobon; Rambabu Kandepu; Fredrik Haglind

With increasing incentives for reducing the CO2 emissions offshore, optimization of energy usage on offshore platforms has become a focus area. Most of offshore oil and gas platforms use gas turbines to support the electrical demand on the platform. It is common to operate a gas turbine mostly under part-load conditions most of the time in order to accommodate any short term peak loads. Gas turbines with flexibility with respect to fuel type, resulting in low turbine inlet and exhaust gas temperatures, are often employed. The typical gas turbine efficiency for an offshore application might vary in the range 20–30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water.A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized. In present paper, a review of the technologies available for waste heat recovery offshore is made. Further, the challenges of implementing these technologies on offshore platforms are discussed from a practical point of view. Performance estimations are made for a number of combined cycles consisting of a gas turbine typically used offshore and organic Rankine cycles employing different working fluids; an optimal media is then suggested based on efficiency, weight and space considerations. The paper concludes with suggestions for further research within the field of waste heat recovery for offshore applications.Copyright


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2006

Design of Aero Gas Turbines Using Hydrogen

Fredrik Haglind; Riti Singh

Mainly owing to the dwindling fossil oil resources and the environmental concerns of discharging greenhouse gases into the atmosphere, it is essential to find an alternative to kerosene for civil aviation. This paper covers the main effects on aero engines when changing to hydrogen fuel. Particularly, emission and performance issues are discussed, but some design matters are also covered. By simply changing to hydrogen, small engine performance gains may be obtained. The results of the calculations suggest that there is the potential to design a combustion system using hydrogen that produces less NO x emissions than any system using kerosene.


Volume 2: Dynamics, Vibration and Control; Energy; Fluids Engineering; Micro and Nano Manufacturing | 2014

Dynamic performance of a combined gas turbine and air bottoming cycle plant for off-shore applications

Alberto Benato; Leonardo Pierobon; Fredrik Haglind; Anna Stoppato

When the Norwegian government introduced the CO2 tax for hydrocarbon fuels, the challenge became to improve the performance of off-shore power systems. An oil and gas platform typically operates on an island (stand-alone system) and the power demand is covered by two or more gas turbines. In order to improve the plant performance, a bottoming cycle unit can be added to the gas turbine topping module, thus constituting a combined cycle plant. This paper aims at developing and testing the numerical model simulating the part-load and dynamic behavior of a novel power system, composed of two gas turbines and a combined gas turbine coupled with an air bottoming cycle plant. The case study is the Draugen off-shore oil and gas platform, located in the North Sea, Norway. The normal electricity demand is 19 MW, currently covered by two gas turbines generating each 50% of the power demand, while the third turbine is on stand-by. During oil export operations the power demand increases up to 25 MW. The model of the new power plant proposed in this work is developed in the Modelica language using basic components acquired from ThermoPower, a library for power plant modelling. The dynamic model of the gas turbine and the air bottoming cycle turbogenerator includes dynamic equations for the combustion chamber, the shell-and-tube recuperator and the turbine shafts. Turbines are modelled by the Stodola equation and by a correlation between the isentropic efficiency and the non-dimensional flow coefficient. Compressors are modelled using quasi steady-state conditions by scaling the maps of axial compressors employing a similar design point. The recuperator, which recovers the exhaust heat from the gas turbine, is modelled using correlations relating the heat transfer coefficient and the pressure drop at part-load with the mass flow rate. Thermodynamic variables and dynamic metrics, such as the rise time and the frequency undershooting/ overshooting, are predicted. Considering a load ramp of 0.5 MW/s, an undershooting of 4.9% and an overshooting of 3.0% are estimated. The rise time is approximately 30 s. Moreover, findings suggest that decreasing the core weight of the recuperator leads to limiting the frequency fluctuations, thus minimizing the risk of failure of the power system.Copyright


Thermal Science | 2014

OPTIMAL DESIGN OF COMPACT ORGANIC RANKINE CYCLE UNITS FOR DOMESTIC SOLAR APPLICATIONS

Luca Barbazza; Leonardo Pierobon; Alberto Mirandola; Fredrik Haglind

Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C), R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C). In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.


ASME Turbo Expo 2013: Turbine Technical Conference and Exposition | 2013

Optimization of Organic Rankine Cycles for Off-Shore Applications

Leonardo Pierobon; Ulrik Larsen; Tuong Van Nguyen; Fredrik Haglind

In off-shore oil and gas platform efficiency, the reliability and fuel flexibility are the major concerns when selecting the gas turbine to support the electrical and mechanical demand on the platform. In order to fulfill these requirements, turbine inlet temperature and pressure ratio are not increased up to the optimal values and one or more redundant gas turbines may be employed. With increasing incentives for reducing the CO2 emissions off-shore, improving the thermal efficiency has become a focus area. Due to the peculiar low turbine outlet temperature and due to space and weight constraints, a steam bottoming cycle is not a convenient solution. On the contrary, organic Rankine cycles (ORCs) present the benefits of high simplicity and compactness. Furthermore, the working fluid can be selected considering the temperature profile at which the heat is supplied; hence the heat transfer process and the thermal efficiency of the cycle can be maximized. This paper is aimed at finding the most optimal ORC tailored for off-shore applications using an optimization procedure based on the genetic algorithm. Numerous working fluids are screened through, considering mainly thermal efficiency, but also other characteristics of the fluids, e.g. stability, environmental and human health impacts, and safety issues. Both supercritical and subcritical ORCs are included in the analysis. The optimization procedure is first applied to a conservative ORC where the maximum pressure is limited to 20 bar. Subsequently the optimal working fluid is identified by removing the restriction on the maximum pressure. Different limits on hazards and global warming potential (GWP) are also set. The study is focused on the SGT-500 gas turbine installed on the Draugen platform in the Norwegian Sea. The simulations suggest that, when a high hazard is accepted, cyclohexane is the best solution. With a turbine inlet pressure limit of 20 bar, the combined gas turbine-ORC system presents an efficiency of 43.7%, corresponding to an improvement of 11.9%-points with respect to the gas turbine efficiency. With no upper pressure boundary, cyclohexane at 55.5 bar is the preferable working fluid with a combined thermal efficiency of 44.3%. The supercritical CO2 cycle with a maximum pressure of 192.9 bar is found to be the best alternative if an extremely low hazard is required.


SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems | 2017

Start-up performance of parabolic trough concentrating solar power plants

Davide Ferruzza; Monika Topel; Ibrahim Basaran; Björn Laumert; Fredrik Haglind

Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their ...


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2016

Model Predictive Control of Offshore Power Stations With Waste Heat Recovery

Leonardo Pierobon; Richard Chan; Xiangan Li; Krishna Iyengar; Fredrik Haglind; Erik B. Ydstie

The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive control (MPC) coupled with a steady-state performance optimizer has been developed in the simulink language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40% for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on-the-fly the thermal efficiency of the plant.


Volume 3B: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Supercritical CO2 Power Cycles; Wind Energy | 2014

Dynamic Performance of Power Generation Systems for Off-Shore Oil and Gas Platforms

Leonardo Pierobon; Krishna Iyengar; Peter Breuhaus; Rambabu Kandepu; Fredrik Haglind; Morten Hana

On off-shore oil and gas platforms two or more gas turbines typically support the electrical demand on site by operating as a stand-alone (island) power system. As reliability and availability are major concerns during operation, the dynamic performance of the power generation system becomes a crucial aspect for stable operation and prevention of unwanted shut down in case of disturbances in the local grid.This paper aims at developing and validating a dynamic model of the gas turbine-based power generation system installed on the Draugen off-shore oil and gas platform (located in the North Sea, Norway). The dynamic model of the SGT-500 gas turbine includes dynamic equations for the combustion chamber and for the high pressure, low pressure and turbine shafts. The low and high pressure compressors are modeled by using quasi steady-state conditions by scaling the maps of axial compressors employing a similar design point. For the turbines, the Stodola equation as well as a correlation relating the isentropic efficiency and the non-dimensional flow coefficient is utilized. The model is implemented in the Modelica language.The dynamic model of a single SGT-500 gas turbine is first verified by comparing the transient response for a given load variation with the results of a non-physical Matlab model developed by the gas turbine manufacturer and adapted to the power set-point of the original engine installed on Draugen. Subsequently, the complete power generation system consisting of three gas turbines is simulated during transient operation and the results are compared with operational data provided by the platform operator. The model is also applied to evaluate the transient response of the system during peak loads. The results suggest that the highest accuracy (average relative error ∼1%) arises on the prediction of the rotational speed of the high pressure shaft, while the largest deviation (average relative error ∼20%) occurs in the evaluation of the pressure at the outlet of the low pressure turbine.As waste heat recovery units (e.g. organic Rankine cycles) are likely to be implemented in future off-shore platforms, the proposed model may serve in the design phase for a preliminary assessment of the dynamic response of the power generation system and to evaluate if requirements such as minimum and maximum frequency during transient operation and the recovery time are satisfied. Furthermore, as the model is based on physics it can be coupled with the measuring instruments to monitor the thermodynamic variables at the inlet and at the outlet of each engine component.Copyright


ASME 2013 International Mechanical Engineering Congress and Exposition | 2013

Technologies for Waste Heat Recovery in Off-Shore Applications

Leonardo Pierobon; Fredrik Haglind; Rambabu Kandepu; Alessandro Fermi; Nicola Rossetti

In off-shore oil and gas platforms the selection of the gas turbine to support the electrical and mechanical demand on site is often a compromise between reliability, efficiency, compactness, low weight and fuel flexibility. Therefore, recovering the waste heat in off-shore platforms presents both technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2 taxes and natural gas savings are considered. The results indicate that the Turboden 65-HRS unit is the optimal technology, resulting in a combined cycle thermal efficiency of 41.5% and a net present value of around 15 M

Collaboration


Dive into the Fredrik Haglind's collaboration.

Top Co-Authors

Avatar

Leonardo Pierobon

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jesper Graa Andreasen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Ulrik Larsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Brian Elmegaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anish Modi

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Martin Ryhl Kærn

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Andrea Meroni

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jorrit Wronski

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lasse Røngaard Clausen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge