Fredrik Jutfelt
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fredrik Jutfelt.
The Journal of Experimental Biology | 2013
Timothy D. Clark; Erik Sandblom; Fredrik Jutfelt
Summary Measurements of aerobic scope [the difference between minimum and maximum oxygen consumption rate ( and , respectively)] are increasing in prevalence as a tool to address questions relating to fish ecology and the effects of climate change. However, there are underlying issues regarding the array of methods used to measure aerobic scope across studies and species. In an attempt to enhance quality control before the diversity of issues becomes too great to remedy, this paper outlines common techniques and pitfalls associated with measurements of , and aerobic scope across species and under different experimental conditions. Additionally, we provide a brief critique of the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis, a concept that is intricately dependent on aerobic scope measurements and is spreading wildly throughout the literature despite little evidence for its general applicability. It is the intention of this paper to encourage transparency and accuracy in future studies that measure the aerobic metabolism of fishes, and to highlight the fundamental issues with assuming broad relevance of the OCLTT hypothesis.
British Journal of Nutrition | 2008
David Knudsen; Fredrik Jutfelt; Henrik Sundh; Kristina Sundell; Wolfgang Koppe; Hanne Frøkiær
Saponins are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25% lupin kernel meal, two diets based on 25% lupin kernel meal with different levels of added soya saponins, and one diet containing 25% defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25% defatted soyabean meal displayed severe enteritis, whereas fish fed 25% lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25% defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.
The Journal of Experimental Biology | 2014
Albin Gräns; Fredrik Jutfelt; Erik Sandblom; Elisabeth Jönsson; Kerstin Wiklander; Catharina Olsson; Samuel Dupont; Olga Ortega-Martinez; Ingibjörg Eir Einarsdottir; Björn Thrandur Björnsson; Kristina Sundell; Michael Axelsson
As a consequence of increasing atmospheric CO2, the worlds oceans are becoming warmer and more acidic. Whilst the ecological effects of these changes are poorly understood, it has been suggested that fish performance including growth will be reduced mainly as a result of limitations in oxygen transport capacity. Contrary to the predictions given by the oxygen- and capacity-limited thermal tolerance hypothesis, we show that aerobic scope and cardiac performance of Atlantic halibut (Hippoglossus hippoglossus) increase following 14–16 weeks exposure to elevated temperatures and even more so in combination with CO2-acidified seawater. However, the increase does not translate into improved growth, demonstrating that oxygen uptake is not the limiting factor for growth performance at high temperatures. Instead, long-term exposure to CO2-acidified seawater reduces growth at temperatures that are frequently encountered by this species in nature, indicating that elevated atmospheric CO2 levels may have serious implications on fish populations in the future.
PLOS ONE | 2013
Fredrik Jutfelt; Karine Bresolin de Souza; Amandine Vuylsteke; Joachim Sturve
As atmospheric CO2 levels rise, the CO2 concentration in ocean surface waters increases through a process commonly referred to as ocean acidification. Recently, surprising behavioural modifications has been detected in the early life stages of tropical coral reef fish exposed to ocean acidification-relevant CO2 concentrations, but it has been unclear if this effect could occur in temperate waters. Here we show several severe behavioural disturbances, including effects on boldness, exploratory behaviour, lateralisation, and learning in a temperate fish, the three-spined stickleback (Gasterosteus aculeatus). The behavioural effects were consistent throughout the exposure period and increased in effect size with exposure time. We observed the effects on adult sticklebacks, a species known to be tolerant to other environmental stressors. Our findings suggest that behavioural abnormalities that stem from CO2 exposure are not restricted to sensitive tropical species or early life stages and may therefore affect fish on a global scale. The severity of disturbances and the possibility of a serious behavioural problem for fish across the globe is cause for concern.
Aquaculture | 2003
Kristina Sundell; Fredrik Jutfelt; Thorleifur Agustsson; R.E. Olsen; Erik Sandblom; Tom Hansen; Björn Thrandur Björnsson
Abstract The intestine is one of the major osmoregulatory organs in fish. During the salmon parr–smolt transformation, the intestine must change its functions from the freshwater (FW) role of preventing water inflow, to the seawater (SW) role of actively absorbing ions and water. This development can be assessed as an increased intestinal fluid transport (Jv) during the parr–smolt transformation. The developmental changes taking place during parr–smolt transformation are governed by a number of endocrine systems, of which cortisol is the main stimulator of Jv. In order to further elucidate the mechanisms behind the elevation of Jv during parr–smolt transformation, juvenile Atlantic salmon were followed during natural (1+age) as well as photoperiod-induced (0+age) smoltification. Plasma cortisol levels, gill and intestinal Na + ,K + -ATPase activity, Jv (only during natural smoltification) and intestinal paracellular permeability were measured. In natural smolting as well as in photoperiod-induced smolting, normal patterns of plasma cortisol levels and gill Na + ,K + -ATPase activity, with clearly defined, transient peaks were obtained. When fish were transferred to SW, a second elevation in plasma cortisol levels and gill Na + ,K + -ATPase activity occurred, whereas Jv remained at similar levels as in FW fish. As to the mechanisms behind the increased Jv during parr–smolt transformation, the intestinal Na + ,K + -ATPase activity increases in the anterior intestine and the paracellular permeability, as judged by transepithelial resistance (TER), appears to decrease in the posterior intestine. These events correspond with the increase in Jv seen during this developmental stage. Furthermore, the increase in the physiological parameters follows the changes in plasma cortisol levels, shifted by a couple of weeks. When the fish were transferred to SW, a further increase in Na + ,K + -ATPase activity was apparent in both anterior and posterior intestine and the paracellular permeability decreases. To summarize, the increased Jv seen during the parr–smolt transformation of Atlantic salmon may be due to an increase in the paracellular water flow of the posterior intestine. When the fish enter SW, the water flow appears to be directed from the paracellular pathway towards a more transcellular route with increased intestinal Na + ,K + -ATPase activity as the main driving force.
Cell and Tissue Research | 2004
Einar Ringø; Fredrik Jutfelt; Premasany Kanapathippillai; Yvonne Bakken; Kristina Sundell; Johan Glette; Terry M. Mayhew; Reidar Myklebust; Rolf Erik Olsen
In fish, bacterial pathogens can enter the host by one or more of three different routes: (a) skin, (b) gills and (c) gastrointestinal tract. Bacteria can cross the gastrointestinal lining in three different ways. In undamaged tissue, bacteria can translocate by transcellular or paracellular routes. Alternatively, bacteria can damage the intestinal lining with extracellular enzymes or toxins before entering. Using an in vitro (Ussing chamber) model, this paper describes intestinal cell damage in Atlantic salmon (Salmo salar L.) caused by the fish pathogen Aeromonas salmonicida ssp. salmonicida, the causative agent of furunculosis. The in vitro method clearly demonstrated substantial detachment of enterocytes from anterior region of the intestine (foregut) upon exposure to the pathogen. In the hindgut (posterior part of the intestine), little detachment was observed but cellular damage involved microvilli, desmosomes and tight junctions. Based on these findings, we suggest that A. salmonicida may obtain entry to the fish by seriously damaging the intestinal lining. Translocation of bacteria through the foregut (rather than the hindgut) is a more likely infection route for A. salmonicida infections in Atlantic salmon.
Fish Physiology and Biochemistry | 2012
Helmut Segner; Henrik Sundh; Kurt Buchmann; Jessica Douxfils; Kristina Sundell; Cédric Mathieu; Neil M. Ruane; Fredrik Jutfelt; Hilde Toften; Lloyd Vaughan
This brief review focuses on health and biological function as cornerstones of fish welfare. From the function-based point of view, good welfare is reflected in the ability of the animal to cope with infectious and non-infectious stressors, thereby maintaining homeostasis and good health, whereas stressful husbandry conditions and protracted suffering will lead to the loss of the coping ability and, thus, to impaired health. In the first part of the review, the physiological processes through which stressful husbandry conditions modulate health of farmed fish are examined. If fish are subjected to unfavourable husbandry conditions, the resulting disruption of internal homeostasis necessitates energy-demanding physiological adjustments (allostasis/acclimation). The ensuing energy drain leads to trade-offs with other energy-demanding processes such as the functioning of the primary epithelial barriers (gut, skin, gills) and the immune system. Understanding of the relation between husbandry conditions, allostatic responses and fish health provides the basis for the second theme developed in this review, the potential use of biological function and health parameters as operational welfare indicators (OWIs). Advantages of function- and health-related parameters are that they are relatively straightforward to recognize and to measure and are routinely monitored in most aquaculture units, thereby providing feasible tools to assess fish welfare under practical farming conditions. As the efforts to improve fish welfare and environmental sustainability lead to increasingly diverse solutions, in particular integrated production, it is imperative that we have objective OWIs to compare with other production forms, such as high-density aquaculture. However, to receive the necessary acceptance for legislation, more robust scientific backing of the health- and function-related OWIs is urgently needed.
Ecology and Evolution | 2013
Elisabet Forsgren; Sam Dupont; Fredrik Jutfelt; Trond Amundsen
As an effect of anthropogenic CO2 emissions, the chemistry of the worlds oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 μatm) CO2 or control seawater (ca 370 μatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment.
Frontiers in Zoology | 2013
Fredrik Jutfelt; Maria Hedgärde
IntroductionThe rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour.ResultsDespite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible.ConclusionsAs Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2013
Andreas Kullgren; Fredrik Jutfelt; Ramon Fontanillas; Kristina Sundell; Linda M. Samuelsson; Kerstin Wiklander; Peter Kling; Wolfgang Koppe; D. G. Joakim Larsson; Björn Thrandur Björnsson; Elisabeth Jönsson
The aim was to elucidate the effects of elevated temperature on growth performance, growth- and appetite-regulating hormones and metabolism in Atlantic salmon, Salmo salar. Post-smolts in seawater (average mass 175g) that had been reared at 12°C were kept at three temperatures (8, 12 and 18°C) and sampled after one and three months. After three months, the fish kept in 18°C had decreased growth rate and condition factor, and elevated plasma levels of growth hormone (GH) and leptin, compared with fish kept at the lower temperatures. Food conversion efficiency was also decreased at 18°C, while at the same time protein uptake was improved and thus was not a limiting mechanism for growth. Redistribution of energy stores in fish at the highest temperature is evident as a preference of maintaining length growth during times of limited energy availability. NMR-based metabolomics analyses of plasma revealed that several metabolites involved in energy metabolism were negatively affected by temperature in the upper temperature range of Atlantic salmon. Specifically, the high temperature induced a decline of several amino acids (glutamine, tyrosine and phenylalanine) and a shift in lipid metabolism. It appears likely that the decreased food intake at the highest temperature is linked to an anorexigenic function of leptin, but also that the decreased food intake, feed conversion efficiency and condition factor can be linked to changes in GH endocrinology.