Fredrik Resman
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fredrik Resman.
Clinical Microbiology and Infection | 2011
Fredrik Resman; Mikael Ristovski; Jonas Ahl; Arne Forsgren; Janet R. Gilsdorf; Aftab Jasir; Bertil Kaijser; Göran Kronvall; Kristian Riesbeck
Introduction of a conjugated vaccine against encapsulated Haemophilus influenzae type b (Hib) has led to a dramatic reduction of invasive Hib disease. However, an increasing incidence of invasive disease by H. influenzae non-type b has recently been reported. Non-type b strains have been suggested to be opportunists in an invasive context, but information on clinical consequences and related medical conditions is scarce. In this retrospective study, all H. influenzae isolates (n = 410) from blood and cerebrospinal fluid in three metropolitan Swedish regions between 1997 and 2009 from a population of approximately 3 million individuals were identified. All available isolates were serotyped by PCR (n = 250). We observed a statistically significant increase in the incidence of invasive H. influenzae disease, ascribed to non-typeable H. influenzae (NTHi) and encapsulated strains type f (Hif) in mainly individuals >60 years of age. The medical reports from a subset of 136 cases of invasive Haemophilus disease revealed that 48% of invasive NTHi cases and 59% of invasive Hif cases, respectively, met the criteria of severe sepsis or septic shock according to the ACCP/SCCM classification of sepsis grading. One-fifth of invasive NTHi cases and more than one-third of invasive Hif cases were admitted to intensive care units. Only 37% of patients with invasive non-type b disease had evidence of immunocompromise, of which conditions related to impaired humoral immunity was the most common. The clinical burden of invasive non-type b H. influenzae disease, measured as days of hospitalization/100 000 individuals at risk and year, increased significantly throughout the study period.
Antimicrobial Agents and Chemotherapy | 2012
Fredrik Resman; Mikael Ristovski; Arne Forsgren; Bertil Kaijser; Göran Kronvall; Patrik Medstrand; Eva Melander; Inga Odenholt; Kristian Riesbeck
ABSTRACT The proportions of Haemophilus influenzae resistant to ampicillin and other β-lactam antibiotics have been low in Sweden compared to other countries in the Western world. However, a near-doubled proportion of nasopharyngeal Swedish H. influenzae isolates with resistance to β-lactams has been observed in the last decade. In the present study, the epidemiology and mechanisms of antimicrobial resistance of H. influenzae isolates from blood and cerebrospinal fluid in southern Sweden from 1997 to 2010 (n = 465) were studied. Antimicrobial susceptibility testing was performed using disk diffusion, and isolates with resistance to any tested β-lactam were further analyzed in detail. We identified a significantly increased (P = 0.03) proportion of β-lactam-resistant invasive H. influenzae during the study period, which was mainly attributed to a significant recent increase of β-lactamase-negative β-lactam-resistant isolates (P = 0.04). Furthermore, invasive β-lactamase-negative β-lactam-resistant H. influenzae isolates from 2007 and onwards were found in higher proportions than the corresponding proportions of nasopharyngeal isolates in a national survey. Multiple-locus sequence typing (MLST) of this group of isolates did not completely separate isolates with different resistance phenotypes. However, one cluster of β-lactamase-negative ampicillin-resistant (BLNAR) isolates was identified, and it included isolates from all geographical areas. A truncated variant of a β-lactamase gene with a promoter deletion, blaTEM-1-PΔ dominated among the β-lactamase-positive H. influenzae isolates. Our results show that the proportions of β-lactam-resistant invasive H. influenzae have increased in Sweden in the last decade.
The Journal of Infectious Diseases | 2011
Teresia Hallström; Birendra Singh; Fredrik Resman; Anna M. Blom; Matthias Mörgelin; Kristian Riesbeck
Nontypeable Haemophilus influenzae (NTHi) causes otitis media and is commonly found in patients with chronic obstructive pulmonary disease (COPD). Adhesins are important for bacterial attachment and colonization. Protein E (PE) is a recently characterized ubiquitous 16 kDa adhesin with vitronectin-binding capacity that results in increased survival in serum. In addition to PE, NTHi utilizes Haemophilus adhesion protein (Hap) that binds to the basement-membrane glycoprotein laminin. We show that most clinical isolates bind laminin and that both Hap and PE are crucial for the NTHi-dependent interaction with laminin as revealed with different mutants. The laminin-binding region is located at the N-terminus of PE, and PE binds to the heparin-binding C-terminal globular domain of laminin. PE simultaneously attracts vitronectin and laminin at separate binding sites, proving the multifunctional nature of the adhesin. This previously unknown PE-dependent interaction with laminin may contribute to NTHi colonization, particularly in smokers with COPD.
Journal of Clinical Microbiology | 2010
Teresia Hallström; Fredrik Resman; Mikael Ristovski; Kristian Riesbeck
ABSTRACT The aim of the present study was to analyze the importance of nontypeable Haemophilus influenzae (NTHi) isolated from patients with sepsis (invasive isolates) compared to nasopharyngeal isolates from patients with upper respiratory tract infection for resistance to complement-mediated attack in human serum and to correlate this result with disease severity. We studied and characterized cases of invasive NTHi disease in detail. All patients with invasive NTHi isolates were adults, and 35% had a clinical presentation of severe sepsis according to the ACCP/SCCM classification of sepsis grading. Moreover, 41% of the patients had evidence of immune deficiency. The different isolates were analyzed for survival in human serum and for binding of 125I-labeled, purified human complement inhibitors C4b-binding protein (C4BP), factor H, and vitronectin, in addition to binding of regulators directly from serum. No significant differences were found when blood-derived and nasopharyngeal isolates were compared, suggesting that interactions with the complement system are equally important for NTHi strains, irrespective of isolation site. Interestingly, a correlation between serum resistance and invasive disease severity was found. The ability to resist the attack of the complement system seems to be important for NTHi strains infecting the respiratory tract as well as the bloodstream.
BMC Infectious Diseases | 2013
Jonas Ahl; Nils Littorin; Arne Forsgren; Inga Odenholt; Fredrik Resman; Kristian Riesbeck
BackgroundMore than 90 immunologically distinct serotypes of Streptococcus pneumoniae exist, and it is not fully elucidated whether the serotype is a risk factor for severity of invasive pneumococcal disease (IPD). Our hypothesis is that serotypes differ in their capacity to cause septic shock.MethodsWe performed a retrospective study in Southern Sweden based upon 513 patients with IPD in the pre-vaccine era 2006–2008. The serotype, co-morbidity, and sepsis severity were determined. Serotypes were compared to serotype 14 as a reference and grouped according to their invasive potential, that is, high (serogroups 1, 5 and 7), intermediate (serogroups 4, 9, 14 and 18) and, finally, low invasive potential (serogroups 3, 6, 8, 15, 19, 23 and 33).ResultsPatients with S. pneumoniae serotype 3 had significantly more often septic shock (25%, odds ratio (OR) 6.33 [95% confidence interval (CI) 1.59-25.29]), higher mortality (30%, OR 2.86 [CI 1.02-8.00]), and more often co-morbidities (83%, OR 3.82 [CI 1.39-10.54]) when compared to serotype 14. A significant difference in age and co-morbidities (p≤0.001) was found when patient data were pooled according to the invasive potential of the infecting pneumococci. The median age and percentage of patients with underlying co-morbidities were 72 years and 79%, respectively, for serogroups associated with low invasiveness, 68 years and 61%, respectively, for serogroups with intermediate invasiveness, and, finally, 62 years and 48%, respectively, for serogroups with high invasiveness. No difference in sepsis severity was found between the three groups.ConclusionsS. pneumoniae serotype 3 more often caused septic shock compared to serotype 14. Our results support the hypothesis that serotypes with high invasiveness mainly cause IPD in younger patients with less co-morbidities. In contrast, serogroups with low and intermediate invasive potential mostly cause IPD in the elderly with defined co-morbidities, and thus can be considered as opportunistic.
Open Forum Infectious Diseases | 2015
Hannah Nilholm; Linnea Holmstrand; Jonas Ahl; Fredrik Månsson; Inga Odenholt; Johan Tham; Eva Melander; Fredrik Resman
An audit-based antimicrobial stewardship program profoundly reduced and altered antibtiotic use in a setting with low antimicrobial resistance with no negative effect on patient outcome
Journal of Clinical Microbiology | 2015
Viktor Månsson; Fredrik Resman; Markus Kostrzewa; Bo Nilson; Kristian Riesbeck
ABSTRACT Haemophilus influenzae type b (Hib) is, in contrast to non-type b H. influenzae, associated with severe invasive disease, such as meningitis and epiglottitis, in small children. To date, accurate H. influenzae capsule typing requires PCR, a time-consuming and cumbersome method. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) provides rapid bacterial diagnostics and is increasingly used in clinical microbiology laboratories. Here, MALDI-TOF MS was evaluated as a novel approach to separate Hib from other H. influenzae. PCR-verified Hib and non-Hib reference isolates were selected based on genetic and spectral characteristics. Mass spectra of reference isolates were acquired and used to generate different classification algorithms for Hib/non-Hib differentiation using both ClinProTools and the MALDI Biotyper software. A test series of mass spectra from 33 Hib and 77 non-Hib isolates, all characterized by PCR, was used to evaluate the algorithms. Several algorithms yielded good results, but the two best were a ClinProTools model based on 22 separating peaks and subtyping main spectra (MSPs) using MALDI Biotyper. The ClinProTools model had a sensitivity of 100% and a specificity of 99%, and the results were 98% reproducible using a different MALDI-TOF MS instrument. The Biotyper subtyping MSPs had a sensitivity of 97%, a specificity of 100%, and 93% reproducibility. Our results suggest that it is possible to use MALDI-TOF MS to differentiate Hib from other H. influenzae. This is a promising method for rapidly identifying Hib in unvaccinated populations and for the screening and surveillance of Hib carriage in vaccinated populations.
Scandinavian Journal of Infectious Diseases | 2011
Fredrik Resman; Tor Svensjö; Can M. Ünal; Jonas Cronqvist; Håkan Brorson; Inga Odenholt; Kristian Riesbeck
Abstract An increased incidence of infections by Haemophilus influenzae type f (Hif) has recently been suggested, but such infections have mainly been regarded as opportunistic. We present here a dramatic case of Hif necrotizing myositis and septic shock. A subsequently diagnosed IgG3 and mannose-binding lectin deficiency possibly contributed to the severe outcome.
BMC Genomics | 2014
Yu-Ching Su; Fredrik Resman; Franziska Hörhold; Kristian Riesbeck
BackgroundThe incidence of invasive disease caused by encapsulated Haemophilus influenzae type f (Hif) has increased in the post-H. influenzae type b (Hib) vaccine era. We previously annotated the first complete Hif genome from a clinical isolate (KR494) that caused septic shock and necrotizing myositis. Here, the full genome of Hif KR494 was compared to sequenced reference strains Hib 10810, capsule type d (Hid) Rd Kw20, and finally nontypeable H. influenzae 3655. The goal was to identify possible genomic characteristics that may shed light upon the pathogenesis of Hif.ResultsThe Hif KR494 genome exhibited large regions of synteny with other H. influenzae, but also distinct genome rearrangements. A predicted Hif core genome of 1390 genes was shared with the reference strains, and 6 unique genomic regions comprising half of the 191 unique coding sequences were revealed. The majority of these regions were inserted genetic fragments, most likely derived from the closely-related Haemophilus spp. including H. aegyptius, H. haemolyticus and H. parainfluenzae. Importantly, the KR494 genome possessed several putative virulence genes that were distinct from non-type f strains. These included the sap 2 operon, aef 3 fimbriae, and genes for kanamycin nucleotidyltranserase, iron-utilization proteins, and putative YadA-like trimeric autotransporters that may increase the bacterial virulence. Furthermore, Hif KR494 lacked a his ABCDEFGH operon for de novo histidine biosynthesis, hmg locus for lipooligosaccharide biosynthesis and biofilm formation, the Haemophilus antibiotic resistance island and a Haemophilus secondary molybdate transport system. We confirmed the histidine auxotrophy and kanamycin resistance in Hif by functional experiments. Moreover, the pattern of unique or missing genes of Hif KR494 was similar in 20 Hif clinical isolates obtained from different years and geographical areas. A cross-species comparison revealed that the Hif genome shared more characteristics with H. aegyptius than Hid and NTHi.ConclusionsThe genomic comparative analyses facilitated identification of genotypic characteristics that may be related to the specific virulence of Hif. In relation to non-type f H. influenzae strains, the Hif genome contains differences in components involved in metabolism and survival that may contribute to its invasiveness.
Journal of Infection | 2016
Fredrik Resman; John Thegerström; Fredrik Månsson; Jonas Ahl; Johan Tham; Kristian Riesbeck
OBJECTIVES The objectives of this study were to examine the prevalence of penicillin-susceptible bacteremic Staphylococcus aureus in the Malmö area in 2014, to re-evaluate the phenotypic methods of penicillinase detection on these isolates, and to investigate the clonal distribution of penicillin-susceptible isolates. METHODS All non-redundant S. aureus from blood in the Malmö catchment area in southern Sweden 2014 were screened for penicillin susceptibility using PcG 1U disk diffusion, E-test PcG and the nitrocefin test. All isolates screened as likely susceptible were subjected to PCR for detection of penicillinase (blaZ) and spa-typing. RESULTS Almost one out of three bacteremic isolates (80/257; 31.1%) were susceptible to penicillin. All screening methods except for the nitrocefin test alone had a low proportion of isolates falsely tested as susceptible, but no method used in the study had perfect specificity compared with PCR. Penicillin-susceptible isolates had a distinct phylogenetic distribution, and two clonal complexes (CC5 and CC45) constituted half of the isolates. CONCLUSION Almost one third of S. aureus isolated from blood in southern Sweden in 2014 was susceptible to penicillin. Considering that intravenous penicillin has theoretical advantages compared with the standard treatment in the study area, we argue that routine testing of penicillin susceptibility should be reconsidered.