Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frida Abel is active.

Publication


Featured researches published by Frida Abel.


Biochemical Journal | 2008

High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours

Helena Carén; Frida Abel; Per Kogner; Tommy Martinsson

ALK (anaplastic lymphoma kinase) is oncogenic in several tumours and has recently been identified as a predisposition gene for familial NB (neuroblastoma) harbouring mutations in the TKD (tyrosine kinase domain). We have analysed a large set of sporadic human NB primary tumours of all clinical stages for chromosomal re-arrangements using a CGH (comparative genomic hybridization) array (n=108) and mutations of the ALK gene (n=90), and expression of ALK and related genes (n=19). ALK amplification or in-gene re-arrangements were found in 5% of NB tumours and mutations were found in 11%, including two novel not previously published mutations in the TKD, c.3733T>A and c.3735C>A. DNA mutations in the TKD and gene amplifications were only found in advanced large primary tumours or metastatic tumours, and correlated with the expression levels of ALK and downstream genes as well as other unfavourable features, and poor outcome. The results of the present study support that the ALK protein contributes to NB oncogenesis providing a highly interesting putative therapeutic target in a subset of unfavourable NB tumours.


Oncogene | 2003

Screening for gene mutations in a 500 kb neuroblastoma tumor suppressor candidate region in chromosome 1p; mutation and stage-specific expression in UBE4B/UFD2.

Cecilia Krona; Katarina Ejeskär; Frida Abel; Per Kogner; Jill Bjelke; Elin Björk; Rose-Marie Sjöberg; Tommy Martinsson

Deletion of a part of the short arm of chromosome 1 is one of the most common chromosomal rearrangements observed in neuroblastoma (NBL) tumors and it is associated with a poor prognosis. No NBL tumor suppressor gene has yet been identified in the region. Our shortest region of overlap of deletions, ranging from marker D1S80 to D1S244, was shown to partly overlap a 500 kb region that was homozygously deleted in a NBL cell line. We have screened seven genes known to reside in or very close to this overlap consensus region, UBE4B/UFD2, KIF1B, DFFA, PGD, CORT, PEX14, and ICAT, for coding mutations in NBL tumor DNA. A few deviations from the reference sequences were identified; most interestingly being a splice site mutation that was detected in UBE4B/UFD2 in a stage 3 NBL with a fatal outcome. This mutation was neither present in the patients constitutional DNA nor in any of 192 control chromosomes analysed. Also, the expression of UBE4B/UFD2 was markedly diminished in the high-stage/poor-outcome tumors as compared to the low-stage/favorable-outcome tumors. Overall, the number of amino-acid changes in the genes of the region was low, which shows that mutations in these genes are rare events in NBL development. Given the data presented here, UBE4B/UFD2 stands out as the strongest candidate NBL tumor suppressor gene in the region at this stage.


British Journal of Cancer | 2004

Investigation of the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma.

Dewi Astuti; Mark R. Morris; Cecilia Krona; Frida Abel; Dean Gentle; Tommy Martinsson; Per Kogner; Hartmut P. H. Neumann; Raimo Voutilainen; Charis Eng; Pierre Rustin; Farida Latif; E R Maher

Germline mutations in the succinate dehydrogenase (SDH) (mitochondrial respiratory chain complex II) subunit B gene, SDHB, cause susceptibility to head and neck paraganglioma and phaeochromocytoma. Previously, we did not identify somatic SDHB mutations in sporadic phaeochromocytoma, but SDHB maps to 1p36, a region of frequent loss of heterozygosity (LOH) in neuroblastoma as well. Hence, to evaluate SDHB as a candidate neuroblastoma tumour suppressor gene (TSG) we performed mutation analysis in 46 primary neuroblastomas by direct sequencing, but did not identify germline or somatic SDHB mutations. As TSGs such as RASSF1A are frequently inactivated by promoter region hypermethylation, we designed a methylation-sensitive PCR-based assay to detect SDHB promoter region methylation. In 21% of primary neuroblastomas and 32% of phaeochromocytomas (32%) methylated (and unmethylated) alleles were detected. Although promoter region methylation was also detected in two neuroblastoma cell lines, this was not associated with silencing of SDHB expression, and treatment with a demethylating agent (5-azacytidine) did not increase SDH activity. These findings suggest that although germline SDHB mutations are an important cause of phaeochromocytoma susceptibility, somatic inactivation of SDHB does not have a major role in sporadic neural crest tumours and SDHB is not the target of 1p36 allele loss in neuroblastoma and phaeochromocytoma.


British Journal of Cancer | 1999

Gain of chromosome arm 17q is associated with unfavourable prognosis in neuroblastoma, but does not involve mutations in the somatostatin receptor 2 (SSTR2) gene at 17q24

Frida Abel; Katarina Ejeskär; Per Kogner; Tommy Martinsson

SummaryDeletion of chromosome arm 1p and amplification of the MYCN oncogene are well-recognized genetic alterations in neuroblastoma cells. Recently, another alteration has been reported; gain of the distal part of chromosome arm 17q. In this study 48 neuroblastoma tumours were successfully analysed for 17q status in relation to known genetic alterations. Chromosome 17 status was detected by fluorescence in situ hybridization (FISH). Thirty-one of the 48 neuroblastomas (65%) showed 17q gain, and this was significantly associated with poor prognosis. As previously reported, 17q gain was significantly associated with metastatic stage 4 neuroblastoma and more frequently detected than both deletion of chromosome arm 1p and MYCN amplification in tumours of all stages. 17q gain also showed a strong correlation to survival probability (P = 0.0009). However, the most significant correlation between 17q gain and survival probability was observed in children with low-stage tumours (stage 1, 2, 3 and 4S), with a survival probability of 100% at 5 years from diagnosis for children with tumours showing no 17q gain compared to 52.5% for those showing 17q gain (P = 0.0021). This suggests that 17q gain as a prognostic factor plays a more crucial role in low-stage tumours. Expression of the somatostatin receptor 2 (SSTR2), localized in chromosome region 17q24, has in previous studies been shown to be positively related to survival in neuroblastoma. A point mutation in the SSTR2 gene has earlier been reported in a human small-cell lung cancer. In this study, mutation screening of the SSTR2 gene in 43 neuroblastoma tumours was carried out with polymerase chain reaction-based single-stranded conformation polymorphism/heteroduplex (SSCP/HD) and DNA sequencing, and none of the tumours showed any aberrations in the SSTR2 gene. These data suggest that mutations in the SSTR2 gene are uncommon in neuroblastoma tumours and do not correlate with either the 17q gain often seen or the reason some tumours do not express SSTR2 receptors. Overall, this study indicates that gain of chromosome arm 17q is the most frequently occurring genetic alteration, and that it is associated with established prognostic factors.


Medical and Pediatric Oncology | 2001

Fine mapping of a tumour suppressor candidate gene region in 1p36.2-3, commonly deleted in neuroblastomas and germ cell tumours.

Katarina Ejeskär; Rose-Marie Sjöberg; Frida Abel; Per Kogner; Peter F. Ambros; Tommy Martinsson

BACKGROUND A common genetic feature of neuroblastomas, which is also an important prognostic factor, is deletion of chromosome region 1p. The deletion of 1p often involves a deletion of varying size, with a consensus region within the most distal bands 1p36.2-3. The neuroblastoma SRO (shortest region of overlap of (deletions) presented earlier by our group was defined distally by the cluster of loci D1S80/ D1Z2/CDC2L1 and proximally by loci D1S244, i.e., approximately 25 cM. The 1p deletions are, however, not restricted to neuroblastoma tumours. In fact, a large spectrum of tumour types display deletions to varying degrees of 1p. PROCEDURE We have exploited the possibility of using deletions of other tumour types, preferentially that of germ cell tumours, and combining the deletions with that of the neuroblastoma SRO. Also in germ cell tumours, distal 1p-deletions have been shown to have prognostic significance. RESULTS We found in our germ cell tumours a SRO ranging from D1S508 to D1S200. Interestingly, this region only partially overlapped (approximately 5 cm) with our neuroblastoma SRO in region D1S508 to D1S244. We have thus focused on analysing this smaller region in the search for genes involved in the genesis of different cancers. We have performed radiation hybrid mapping of a large number of markers, STSs, ESTs, and others known to reside in 1p. We have also initiated the development of a BAC contig of the region. FISH, and fibre-FISH mapping of BACs were also performed. CONCLUSIONS The data presented here constitute an ongoing work with the aim of identifying and cloning gene(s) important for development of germ cell tumours, neuroblastomas, and possibly other tumours.


BMC Cancer | 2008

Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer

Elin Karlsson; Ulla Delle; Anna Danielsson; Björn Olsson; Frida Abel; Per Karlsson; Khalil Helou

BackgroundIt is of great significance to find better markers to correctly distinguish between high-risk and low-risk breast cancer patients since the majority of breast cancer cases are at present being overtreated.Methods46 tumours from node-negative breast cancer patients were studied with gene expression microarrays. A t-test was carried out in order to find a set of genes where the expression might predict clinical outcome. Two classifiers were used for evaluation of the gene lists, a correlation-based classifier and a Voting Features Interval (VFI) classifier. We then evaluated the predictive accuracy of this expression signature on tumour sets from two similar studies on lymph-node negative patients. They had both developed gene expression signatures superior to current methods in classifying node-negative breast tumours. These two signatures were also tested on our material.ResultsA list of 51 genes whose expression profiles could predict clinical outcome with high accuracy in our material (96% or 89% accuracy in cross-validation, depending on type of classifier) was developed. When tested on two independent data sets, the expression signature based on the 51 identified genes had good predictive qualities in one of the data sets (74% accuracy), whereas their predictive value on the other data set were poor, presumably due to the fact that only 23 of the 51 genes were found in that material. We also found that previously developed expression signatures could predict clinical outcome well to moderately well in our material (72% and 61%, respectively).ConclusionThe list of 51 genes derived in this study might have potential for clinical utility as a prognostic gene set, and may include candidate genes of potential relevance for clinical outcome in breast cancer. According to the predictions by this expression signature, 30 of the 46 patients may have benefited from different adjuvant treatment than they recieved.Trial registrationThe research on these tumours was approved by the Medical Faculty Research Ethics Committee (Medicinska fakultetens forskningsetikkommitté, Göteborg, Sweden (S164-02)).


British Journal of Cancer | 2002

Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours

Frida Abel; Rose-Marie Sjöberg; Katarina Ejeskär; Cecilia Krona; Tommy Martinsson

The genes encoding Caspase-9 and DFF45 have both recently been mapped to chromosome region 1p36.2, that is a region alleged to involve one or several tumour suppressor genes in neuroblastoma tumours. This study presents an update contig of the ‘Smallest Region of Overlap of deletions’ in Scandinavian neuroblastoma tumours and suggests that DFF45 is localized in the region. The genomic organization of the human DFF45 gene, deduced by in-silico comparisons of DNA sequences, is described for the first time in this paper. In the present study 44 primary tumours were screened for mutation by analysis of the genomic sequences of the genes. In two out of the 44 tumours this detected in the DFFA gene one rare allele variant that caused a non-polar to a polar amino acid exchange in a preserved hydrophobic patch of DFF45. One case was hemizygous due to deletion of the more common allele of this polymorphism. Out of 194 normal control alleles only one was found to carry this variant allele, so in respect of it, no healthy control individual out of 97 was homozygous. Moreover, our RT–PCR expression studies showed that DFF45 is preferably expressed in low-stage neuroblastoma tumours and to a lesser degree in high-stage neuroblastomas. We conclude that although coding mutations of Caspase-9 and DFF45 are infrequent in neuroblastoma tumours, our discovery of a rare allele in two neuroblastoma cases should be taken to warrant further studies of the role of DFF45 in neuroblastoma genetics.


Cytogenetic and Genome Research | 2000

Fine mapping of the human preprocortistatin gene (CORT) to neuroblastoma consensus deletion region 1p36.3-->p36.2, but absence of mutations in primary tumors.

Katarina Ejeskär; Frida Abel; Rose-Marie Sjöberg; J Bäckström; Per Kogner; Tommy Martinsson

The processed product of the human gene preprocortistatin, the peptide cortistatin-17 (hCST-17), bears a strong structural resemblance to the peptide somatostatin (SST), which has an identical receptor binding domain. CST has affinity to all known SST receptor (SSTR) subtypes. Expression of both SST and its receptors has been shown in previous studies to have biological and clinical significance in neuroblastomas, with a putative role in tumor differentiation and apoptosis in vivo. In this work we have employed radiation hybrid mapping and BAC physical mapping to map the human preprocortistatin gene (CORT) to chromosome region 1p36.3→p36.2, close to the genetic marker D1S244. D1S244 defines the centromeric border of the smallest region of overlap of deletion in our primary neuroblastoma material. We have also defined the genomic sequence of the gene by BAC sequencing and found that preprocortistatin consists of two exons divided by a 1-kb intron. Two polymorphic sites, neither of which causes amino acid exchange, have been detected in the coding region of the gene. Expression studies showed that preprocortistatin is expressed in neuroblastomas of all different stages, as well as in ganglioneuromas. Through genomic sequencing we made mutation analyses of exonic sequences in 49 primary neuroblastomas of all different stages, but no mutations could be detected.


Cancer Cell International | 2011

A 6-gene signature identifies four molecular subgroups of neuroblastoma

Frida Abel; Daniel Dalevi; Maria Nethander; Rebecka Jörnsten; Katleen De Preter; Joëlle Vermeulen; Raymond L. Stallings; Per Kogner; John M. Maris; Staffan Nilsson

BackgroundThere are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis.ResultsThe present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fishers exact test).ConclusionsBased on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this groups specific characteristics.


BMC Medical Genomics | 2009

Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes

Kaisa Thorell; Annika Bergman; Helena Carén; Staffan Nilsson; Per Kogner; Tommy Martinsson; Frida Abel

BackgroundOne of the most striking features of the childhood malignancy neuroblastoma (NB) is its clinical heterogeneity. Although there is a great need for better clinical and biological markers to distinguish between tumours with different severity and to improve treatment, no clear-cut prognostic factors have been found. Also, no major NB tumour suppressor genes have been identified.MethodsIn this study we performed expression analysis by quantitative real-time PCR (QPCR) on primary NB tumours divided into two groups, of favourable and unfavourable outcome respectively. Candidate genes were selected on basis of lower expression in unfavourable tumour types compared to favourables in our microarray expression analysis. Selected genes were studied in two steps: (1) using TaqMan Low Density Arrays (TLDA) targeting 89 genes on a set of 12 NB tumour samples, and (2) 12 genes were selected from the TLDA analysis for verification using individual TaqMan assays in a new set of 13 NB tumour samples.ResultsBy TLDA analysis, 81 out of 87 genes were found to be significantly differentially expressed between groups, of which 14 have previously been reported as having an altered gene expression in NB. In the second verification round, seven out of 12 transcripts showed significantly lower expression in unfavourable NB tumours, ATBF1, CACNA2D3, CNTNAP2, FUSIP1, GNB1, SLC35E2, and TFAP2B. The gene that showed the highest fold change in the TLDA analysis, POU4F2, was investigated for epigenetic changes (CpG methylation) and mutations in order to explore the cause of the differential expression. Moreover, the fragile site gene CNTNAP2 that showed the largest fold change in verification group 2 was investigated for structural aberrations by copy number analysis. However, the analyses of POU4F2 and CNTNAP2 showed no genetic alterations that could explain a lower expression in unfavourable NB tumours.ConclusionThrough two steps of verification, seven transcripts were found to significantly discriminate between favourable and unfavourable NB tumours. Four of the transcripts, CACNA2D3, GNB1, SLC35E2, and TFAP2B, have been observed in previous microarray studies, and are in this study independently verified. Our results suggest these transcripts to be markers of malignancy, which could have a potential usefulness in the clinic.

Collaboration


Dive into the Frida Abel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rose-Marie Sjöberg

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Annica Wilzén

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Cecilia Krona

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Staffan Nilsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Muth

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Bo Wängberg

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Helena Carén

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge