Frida Ben-Ami
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frida Ben-Ami.
Evolution | 2008
Frida Ben-Ami; Laurence Mouton; Dieter Ebert
Abstract Multiple infections of a host by different strains of the same microparasite are common in nature. Although numerous models have been developed in an attempt to predict the evolutionary effects of intrahost competition, tests of the assumptions of these models are rare and the outcome is diverse. In the present study we examined the outcome of mixed-isolate infections in individual hosts, using a single clone of the waterflea Daphnia magna and three isolates of its semelparous endoparasite Pasteuria ramosa. We exposed individual Daphnia to single- and mixed-isolate infection treatments, both simultaneously and sequentially. Virulence was assessed by monitoring host mortality and fecundity, and parasite spore production was used as a measure of parasite fitness. Consistent with most assumptions, in multiply infected hosts we found that the virulence of mixed infections resembled that of the more virulent competitor, both in simultaneous multiple infections and in sequential multiple infections in which the virulent isolate was first to infect. The more virulent competitor also produced the vast majority of transmission stages. Only when the less virulent isolate was first to infect, the intrahost contest resembled scramble competition, whereby both isolates suffered by producing fewer transmission stages. Surprisingly, mixed-isolate infections resulted in lower fecundity-costs for the hosts, suggesting that parasite competition comes with an advantage for the host relative to single infections. Finally, spore production correlated positively with time-to-host-death. Thus, early-killing of more competitive isolates produces less transmission stages than less virulent, inferior isolates. Our results are consistent with the idea that less virulent parasite lines may be replaced by more virulent strains under conditions with high rates of multiple infections.
Ecology Letters | 2011
Pepijn Luijckx; Frida Ben-Ami; Laurence Mouton; Louis Du Pasquier; Dieter Ebert
The degree of specificity in host-parasite interactions has important implications for ecology and evolution. Unfortunately, specificity can be difficult to determine when parasites cannot be cultured. In such cases, studies often use isolates of unknown genetic composition, which may lead to an underestimation of specificity. We obtained the first clones of the unculturable bacterium Pasteuria ramosa, a parasite of Daphnia magna. Clonal genotypes of the parasite exhibited much more specific interactions with host genotypes than previous studies using isolates. Clones of P. ramosa infected fewer D. magna genotypes than isolates and host clones were either fully susceptible or fully resistant to the parasite. Our finding enhances our understanding of the evolution of virulence and coevolutionary dynamics in this system. We recommend caution when using P. ramosa isolates as the presence of multiple genotypes may influence the outcome and interpretation of some experiments.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Frida Ben-Ami; Roland R. Regoes; Dieter Ebert
Epidemiological models generally assume that the number of susceptible individuals that become infected within a unit of time depends on the density of the hosts and the concentration of parasites (i.e. mass-action principle). However, empirical studies have found significant deviations from this assumption due to biotic and abiotic factors, such as seasonality, the spatial structure of the host population and host heterogeneity with respect to immunity and susceptibility. In this paper, we examine the effect of the dose level of the bacterial endoparasite Pasteuria ramosa on the infection rate of its host, the water flea Daphnia magna. Using seven host clones and two parasite isolates, we measure the fraction of infected hosts after exposure to eight different parasite doses to determine whether there is variation in the infection process across different host clone–parasite isolate combinations. In five combinations, a pronounced dose-dependent infection pattern was found. Using a likelihood approach, we compare the infection data of these five combinations to the fit of three mathematical models: a mass-action model, a parasite antagonism model (i.e. an increase in the parasite dose leads to an under-proportionate increase in the infection rate per host) and a heterogeneous host model. We found that the host heterogeneity model, in which we assumed the existence of non-inherited phenotypic differences in host susceptibilities to the parasite, provides the best fit. Our analysis suggests that among 5 out of the 14 host clone–parasite isolate combinations that resulted in appreciable infections, non-genetic host heterogeneity plays an important role.
BMC Biology | 2011
David Duneau; Pepijn Luijckx; Frida Ben-Ami; Christian Laforsch; Dieter Ebert
BackgroundInfection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them.ResultsUsing the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes.ConclusionsOur results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.
The American Naturalist | 2010
Frida Ben-Ami; Dieter Ebert; Roland R. Regoes
Stress conditions have been found to change the susceptibility of hosts or their offspring to infection. The usual method of testing at just one parasite dose level does not allow conclusions on the distribution of susceptibility. To better understand the epidemiology and evolution of host‐parasite systems, however, knowledge about the distribution of host susceptibility, the parameters that characterize it, and how it changes in response to environmental conditions is required. We investigated transgenerational effects of different stress factors by exposing Daphnia magna to standard conditions, to low food levels, or to a high dose of the bacterial pathogen Pasteuria ramosa and then measuring the susceptibility of the offspring to different spore doses of the parasite. For the analysis we used a mathematical model that predicts the fraction of infected hosts at different parasite doses, allowing us to estimate the mean and variance of host susceptibility. We find that low food levels reduce both the mean and the variance of offspring susceptibility. Parasite exposure, on the other hand, widens the offspring’s susceptibility distribution without affecting its mean. Our analysis uncovered previously unknown transgenerational effects on the distribution of susceptibilities. The finding of an alteration in the variance of susceptibility to infection has implications for host and parasite dynamics and can contribute to our understanding of the stability of host‐parasite interactions.
BMC Genomics | 2009
Weihong Qi; Guang Nong; James F. Preston; Frida Ben-Ami; Dieter Ebert
BackgroundShotgun sequences of DNA extracts from whole organisms allow a comprehensive assessment of possible symbionts. The current project makes use of four shotgun datasets from three species of the planktonic freshwater crustaceans Daphnia: one dataset from clones of D. pulex and D. pulicaria and two datasets from one clone of D. magna. We analyzed these datasets with three aims: First, we search for bacterial symbionts, which are present in all three species. Second, we search for evidence for Cyanobacteria and plastids, which had been suggested to occur as symbionts in a related Daphnia species. Third, we compare the metacommunities revealed by two different 454 pyrosequencing methods (GS 20 and GS FLX).ResultsIn all datasets we found evidence for a large number of bacteria belonging to diverse taxa. The vast majority of these were Proteobacteria. Of those, most sequences were assigned to different genera of the Betaproteobacteria family Comamonadaceae. Other taxa represented in all datasets included the genera Flavobacterium, Rhodobacter, Chromobacterium, Methylibium, Bordetella, Burkholderia and Cupriavidus. A few taxa matched sequences only from the D. pulex and the D. pulicaria datasets: Aeromonas, Pseudomonas and Delftia. Taxa with many hits specific to a single dataset were rare. For most of the identified taxa earlier studies reported the finding of related taxa in aquatic environmental samples. We found no clear evidence for the presence of symbiotic Cyanobacteria or plastids. The apparent similarity of the symbiont communities of the three Daphnia species breaks down on a species and strain level. Communities have a similar composition at a higher taxonomic level, but the actual sequences found are divergent. The two Daphnia magna datasets obtained from two different pyrosequencing platforms revealed rather similar results.ConclusionThree clones from three species of the genus Daphnia were found to harbor a rich community of symbionts. These communities are similar at the genus and higher taxonomic level, but are composed of different species. The similarity of these three symbiont communities hints that some of these associations may be stable in the long-term.
Journal of Evolutionary Biology | 2005
Frida Ben-Ami; Joseph Heller
The Red Queen hypothesis predicts that sex should be more common in populations heavily infested with parasites, than in those without. This hypothesis was investigated in the aquatic snail Melanoides tuberculata, in which both sexual and parthenogenetic individuals exist in natural populations, and some populations are heavily infested by trematodes. The presence of fertile males and the higher genetic diversity of bisexual populations are indicative of sexual reproduction. We compared sites in 1990, 1999, and 2001, and we looked for a positive correlation between male and parasite frequencies. Male frequency was not correlated with the frequency of individuals infected by trematodes. This lack of correlation was reconfirmed in a retrospective power analysis. In a period of 9 years, male frequencies decreased but infection levels increased. These results do not support the Red Queen hypothesis. In samples with high male frequency the number of embryos was low, perhaps indicating that males may have a negative effect on embryo numbers. This effect of males on fitness could perhaps suggest that the cost of sex is fewer embryos. The reduction in embryo numbers may also represent a trade‐off between mating and egg production costs.
Journal of Evolutionary Biology | 2011
Frida Ben-Ami; Thierry Rigaud; Dieter Ebert
In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less‐virulent parasite may protect the host against the more‐virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood‐infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less‐virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa.
Hydrobiologia | 2013
Liron Goren; Frida Ben-Ami
Water fleas (Cladocera) constitute a major component in freshwater food webs, with important ecosystem-level consequences. Their abundance and richness are strongly influenced by their ecology and coevolution with numerous endoparasites. We investigated how parasitism shapes cladoceran community structure and diversity. We surveyed 204 freshwater permanent and rain pools in Israel, identified all cladoceran specimens and screened them for infection. Daphniid species richness in this survey was lower than in previous surveys and the distribution pattern of the species was different, most likely due to local extinction and habitat loss. We recorded a total of 21 taxa of endoparasites, of which 13 are most likely species not yet described. Variation in parasite richness among hosts and sites could not be attributed to differences in host body size and behavioral feeding strategies. We extend the known host range and geographic distribution of eight parasites from Europe and North America (between latitudes 40° and 70°) to much southern areas (latitudes 31° and 32°) and to different climate zones (arid and semi-arid areas). In many infected populations we found co-occurrence of at least two endoparasites, and in most of these cases Daphnia individuals were found to be infected by several endoparasite species simultaneously. Such multiple infections may have important consequences for community structure as well as host–parasite coevolution.
BMC Evolutionary Biology | 2013
Frida Ben-Ami; Jarkko Routtu
BackgroundMultiple infections of the same host by different strains of the same microparasite species are believed to play a crucial role during the evolution of parasite virulence. We investigated the role of specificity, relative virulence and relative dose in determining the competitive outcome of multiple infections in the Daphnia magna-Pasteuria ramosa host-parasite system.ResultsWe found that infections by P. ramosa clones (single genotype) were less virulent and produced more spores than infections by P. ramosa isolates (possibly containing multiple genotypes). We also found that two similarly virulent isolates of P. ramosa differed considerably in their within-host competitiveness and their effects on host offspring production when faced with coinfecting P. ramosa isolates and clones. Although the relative virulence of a P. ramosa isolate/clone appears to be a good indicator of its competitiveness during multiple infections, the relative dose may alter the competitive outcome. Moreover, spore counts on day 20 post-infection indicate that the competitive outcome is largely decided early in the parasite’s growth phase, possibly mediated by direct interference or apparent competition.ConclusionsOur results emphasize the importance of epidemiology as well as of various parasite traits in determining the outcome of within-host competition. Incorporating realistic epidemiological and ecological conditions when testing theoretical models of multiple infections, as well as using a wider range of host and parasite genotypes, will enable us to better understand the course of virulence evolution.