Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Friedrich Siebert is active.

Publication


Featured researches published by Friedrich Siebert.


The EMBO Journal | 1986

Evidence for light-induced 13-cis, 14-s-cis isomerization in bacteriorhodopsin obtained by FTIR difference spectroscopy using isotopically labelled retinals

Klaus Gerwert; Friedrich Siebert

We have obtained by Fourier transformed infra‐red (FTIR)‐spectroscopy BR‐K, BR‐L and BR‐M difference spectra of bacteriorhodopsin regenerated with isotopically labelled retinals. Thereby, we are able to assign reliably the C14–C15 and C=N stretching vibrations of the various intermediates. The lower C14–C15 stretching vibration frequency in L as compared with 13‐cis protonated Schiff base model compounds indicates a 13‐cis, 14‐s‐cis configuration of the retinal in this species. The unusually low C=N stretching vibration in K at 1615 cm−1 indicates less stabilization of the positive charge at the Schiff base by the protein environment. Based on these results, a mechanism is suggested by which the stored light energy is transformed into proton transfers.


FEBS Letters | 1992

Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin. A solid-state 13C CP-MAS NMR investigation.

Gu¨nther Metz; Friedrich Siebert; Martin Engelhard

High‐resolution solid‐state13C NMR spectra of the ground state and M intermediate of the bacteriorhodopsin mutant D96N with the isotope label at [4‐13C]Asp and [11‐13C]Trp were recorded. The NMR spectra show that Asp85 is protonated in the M intermediate. The environment of Asp85 is quite hydrophobic. On the other hand, Asp212 remains deprotonated and a slight shift to lower field indicates a more hydrophilic environment. Asp85 also protonates in the purple‐to‐blue transition or bacteriorhodopsin in the deionized membrane, where it experiences a similar environment to M. The shift of Trp resonances in M reflect a conformational change of the protein in forming the M intermediate.


Journal of Biological Chemistry | 2001

Conformations of the Active and Inactive States of Opsin

Reiner Vogel; Friedrich Siebert

The signaling state metarhodopsin II of the visual pigment rhodopsin decays to the apoprotein opsin and all-trans retinal, which are then regenerated to rhodopsin by the visual cycle. Opsin is known to have at neutral pH only a small residual constitutive activity toward its G protein transducin, which is thought to play a considerable role in light adaptation (bleaching desensitization). In this study we show with Fourier-transform infrared spectroscopy that after metarhodopsin II decay, opsin exists in two conformational states that are in a pH-dependent equilibrium at 30 °C with a pK of 4.1 in the presence of hydroxylamine scavenging the endogenous all-trans retinal. Despite the lack of the native agonist in its binding pocket, the low pH opsin conformation is very similar to that of metarhodopsin II and is likewise stabilized by peptides derived from rhodopsins cognate G protein, transducin. The high pH form, on the other hand, has some conformational similarity to the inactive metarhodopsin I state. We therefore conclude that the opsin apoprotein displays intrinsic conformational states that are merely modulated by bound all-trans retinal.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy

Xiue Jiang; E. Zaitseva; M. Schmidt; Friedrich Siebert; Martin Engelhard; Ramona Schlesinger; Kenichi Ataka; R. Vogel; Joachim Heberle

Membrane proteins are molecular machines that transport ions, solutes, or information across the cell membrane. Electrophysiological techniques have unraveled many functional aspects of ion channels but suffer from the lack of structural sensitivity. Here, we present spectroelectrochemical data on vibrational changes of membrane proteins derived from a single monolayer. For the seven-helical transmembrane protein sensory rhodopsin II, structural changes of the protein backbone and the retinal cofactor as well as single ion transfer events are resolved by surface-enhanced IR difference absorption spectroscopy (SEIDAS). Angular changes of bonds versus the membrane normal have been determined because SEIDAS monitors only those vibrations whose dipole moment are oriented perpendicular to the solid surface. The application of negative membrane potentials (ΔV = −0.3 V) leads to the selective halt of the light-induced proton transfer at the stage of D75, the counter ion of the retinal Schiff base. It is inferred that the voltage raises the energy barrier of this particular proton-transfer reaction, rendering the energy deposited in the retinal by light excitation insufficient for charge transfer to occur. The other structural rearrangements that accompany light-induced activity of the membrane protein, are essentially unaffected by the transmembrane electric field. Our results demonstrate that SEIDAS is a generic approach to study processes that depend on the membrane potential, like those in voltage-gated ion channels and transporters, to elucidate the mechanism of ion transfer with unprecedented spatial sensitivity and temporal resolution.


Applied Spectroscopy | 1993

Time-Resolved Step-Scan FT-IR Investigations of the Transition from KL to L in the Bacteriorhodopsin Photocycle: Identification of Chromophore Twists by Assigning Hydrogen-Out-Of-Plane (HOOP) Bending Vibrations

Olaf Weidlich; Friedrich Siebert

Sub-microsecond time-resolved step-scan FT-IR spectroscopy is applied to the study of the molecular changes and their dynamics occurring during the KL-L transition of bacteriorhodopsin. The time-resolved difference spectra are compared to the static low-temperature BR → K and BR → L difference spectra. Our data show that the protein part in KL is similar to that in K. However, the chromophore is more relaxed and is differently twisted. A strong hydrogen-out-of-plane (HOOP) mode in KL is assigned to the 15-HOOP. As is the case for L, a strong deformation of the C14-C15 single bond is deduced for KL. Evidence of a KL → L equilibrium is presented. In N, a 15-HOOP mode similar to that in L is observed, indicating very similar twists of the C14-C15 single bond. This observation excludes major contributions of this deformation to the reduction of the pKa of the Schiff base in L. From the spectral changes, important molecular events are deduced that occur in the transitions to KL, L, and N.


Current Opinion in Chemical Biology | 2000

Vibrational spectroscopy as a tool for probing protein function.

Reiner Vogel; Friedrich Siebert

Vibrational spectroscopy has become increasingly important as a tool for understanding the mechanisms of photosystem II, phytochrome and terminal oxidases. More general enzymatic or receptor systems have been studied, opening a new field of applications. Femtosecond infrared pump/probe studies of the important amide-I band seem to provide a basis for its molecular and structural interpretation.


Journal of Molecular Structure | 1989

Photoisomerization in bacteriorhodopsin studied by FTIR, linear dichroism and photoselection experiments combined with quantum chemical theoretical analysis

Karim Fahmy; Friedrich Siebert; M.F. Großjean; Paul Tavan

Abstract Orientations of IR transition moments of the retinal chromophore of bacteriorhodopsin (BR) and of the apo-protein are investigated by FTIR linear dichroism and photoselection measurements. Low temperature difference spectra for the photoinduced transitions of BR to its photocycle intermediates K and L are evaluated using improved methods. Quantum chemical calculations of directions of IR and electronic transition moments of model chromophores are employed to analyze corresponding observations. The chromophore of light-adapted BR 568 is shown to exhibit small (15–30°) twists around the CC single bonds of retinals polyene chain but no large overall helicity (⩽15°). The average retinal plane is demonstrated to form an angle of 90±20° with the plane of the purple membrane. The C 9 C 10 double bond of retinal is found approximately parallel to the plane of the membrane. Upon photoisomerization the orientation of the chromophore moiety from C 1 to C 13 is estimated to be largely conserved. The single bond twists of the chromophore in L are shown to be larger than those in BR 568 . This result is in agreement with the previous prediction of increased single bond twists in L, which can cause a p K decrease of the chromophore and, thereby, enforce its deprotonation in the L→M transition [Schulten and Tavan, Nature, 272 (1978) 85].


Biophysical Journal | 2001

Static and Time-Resolved Step-Scan Fourier Transform Infrared Investigations of the Photoreaction of Halorhodopsin from Natronobacterium Pharaonis: Consequences for Models of the Anion Translocation Mechanism

Christian Hackmann; Jarmila Guijarro; Igor Chizhov; Martin Engelhard; Christoph Rödig; Friedrich Siebert

The molecular changes during the photoreaction of halorhodopsin from Natronobacterium pharaonis have been monitored by low-temperature static and by time-resolved step-scan Fourier transform infrared difference spectroscopy. In the low-temperature L spectrum anions only influence a band around 1650 cm(-1), tentatively assigned to the C=N stretch of the protonated Schiff base of L. The analysis of the time-resolved spectra allows to identify the four states: K, L(1), L(2), and O. Between L(1) and L(2), only the apoprotein undergoes alterations. The O state is characterized by an all-trans chromophore and by rather large amide I spectral changes. Because in our analysis the intermediate containing O is in equilibrium with a state indistinguishable from L(2), we are unable to identify an N-like state. At very high chloride concentrations (>5 M), we observe a branching of the photocycle from L(2) directly back to the dark state, and we provide evidence for direct back-isomerization from L(2). This branching leads to the reported reduction of transport activity at such high chloride concentrations. We interpret the L(1) to L(2) transition as an accessibility change of the anion from the extracellular to the cytosolic side, and the large amide I bands in O as an indication for opening of the cytosolic channel from the Schiff base toward the cytosolic surface and/or as indication for changes of the binding constant of the release site.


Biophysical Journal | 2003

Time-Resolved FTIR Studies of Sensory Rhodopsin II (NpSRII) from Natronobacterium pharaonis: Implications for Proton Transport and Receptor Activation

Michael Hein; Ansgar A. Wegener; Martin Engelhard; Friedrich Siebert

The photocycle of the photophobic receptor from Natronobacterium pharaonis, NpSRII, is studied by static and time-resolved step-scan Fourier transform infrared spectroscopy. Both low-temperature static and time-resolved spectra resolve a K-like intermediate, and the corresponding spectra show little difference within the noise of the time-resolved data. As compared to intermediate K of bacteriorhodopsin, relatively large amide I bands indicate correspondingly larger distortions of the protein backbone. The time-resolved spectra identify an intermediate L-like state with surprisingly small additional molecular alterations. With the formation of intermediate M, the Schiff-base proton is transferred to the counterion Asp-75. This state is characterized by larger amide bands indicating larger distortions of the protein. We can identify a second M state that differs only in small-protein bands. Reisomerization of the chromophore to all-trans occurs with the formation of intermediate O. The accelerated decay of intermediate M caused by azide results in another red-shifted intermediate with a protonated Schiff base. The chromophore in this state, however, still has 13-cis geometry. Nevertheless, the reisomerization is still as slow as under the conditions without azide. The results are discussed with respect to mechanisms of the observed proton pumping and the possible roles of the intermediates in receptor activation.


FEBS Letters | 1998

Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II1

Mareike Beck; Friedrich Siebert; Thomas P. Sakmar

Comparing the FTIR difference spectra of the rhodopsin→metarhodopsin II transition in membranes and in dodecylmaltoside detergent, characteristic variations are observed between 1715 and 1750 cm−1. By repeating the measurements with the rhodopsin mutant D83N/E122Q, the spectral variation between the samples in membranes versus detergent could be assigned to a difference band at 1743(+)/1724(−) cm−1, which does not exhibit a deuteration‐induced downshift. We provide evidence that this band is probably caused by the C=O stretch of only one ester group of one lipid molecule. This group interacts with the dark state of rhodopsin, whereas in metarhodopsin II, the lipid molecule behaves as if it were in the bulk lipid phase.

Collaboration


Dive into the Friedrich Siebert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Hildebrandt

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mordechai Sheves

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karim Fahmy

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Maria Andrea Mroginski

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge