Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fritjof Nilsson is active.

Publication


Featured researches published by Fritjof Nilsson.


ACS Applied Materials & Interfaces | 2012

Thermal Conductivity and Combustion Properties of Wheat Gluten Foams

Thomas O. J. Blomfeldt; Fritjof Nilsson; Tim Holgate; Jianxiao Jackie Xu; Eva Johansson; Mikael S. Hedenqvist

Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam.


Acta Orthopaedica | 2011

Validation of a 3D CT method for measurement of linear wear of acetabular cups

Anneli Jedenmalm; Fritjof Nilsson; Marilyn E. Noz; Douglas D. Green; Ulf W. Gedde; Ian C. Clarke; Andreas Stark; Gerald Q. Maguire Jr.; Michael P. Zeleznik; Henrik Olivecrona

Background We evaluated the accuracy and repeatability of a 3D method for polyethylene acetabular cup wear measurements using computed tomography (CT). We propose that the method be used for clinical in vivo assessment of wear in acetabular cups. Material and methods Ultra-high molecular weight polyethylene cups with a titanium mesh molded on the outside were subjected to wear using a hip simulator. Before and after wear, they were (1) imaged with a CT scanner using a phantom model device, (2) measured using a coordinate measurement machine (CMM), and (3) weighed. CMM was used as the reference method for measurement of femoral head penetration into the cup and for comparison with CT, and gravimetric measurements were used as a reference for both CT and CMM. Femoral head penetration and wear vector angle were studied. The head diameters were also measured with both CMM and CT. The repeatability of the method proposed was evaluated with two repeated measurements using different positions of the phantom in the CT scanner. Results The accuracy of the 3D CT method for evaluation of linear wear was 0.51 mm and the repeatability was 0.39 mm. Repeatability for wear vector angle was 17°. Interpretation This study of metal-meshed hip-simulated acetabular cups shows that CT has the capacity for reliable measurement of linear wear of acetabular cups at a clinically relevant level of accuracy.


Carbohydrate Polymers | 2016

Liquid-core nanocellulose-shell capsules with tunable oxygen permeability.

Anna J. Svagan; C. Bender Koch; Mikael S. Hedenqvist; Fritjof Nilsson; Gunnar Glasser; Stanislav Baluschev; Mogens L. Andersen

Encapsulation of oxygen sensitive components is important in several areas, including those in the food and pharmaceutical sectors, in order to improve shelf-life (oxidation resistance). Neat nanocellulose films demonstrate outstanding oxygen barrier properties, and thus nanocellulose-based capsules are interesting from the perspective of enhanced protection from oxygen. Herein, two types of nanocellulose-based capsules with liquid hexadecane cores were successfully prepared; a primary nanocellulose polyurea-urethane capsule (diameter: 1.66 μm) and a bigger aggregate capsule (diameter: 8.3 μm) containing several primary capsules in a nanocellulose matrix. To quantify oxygen permeation through the capsule walls, an oxygen-sensitive spin probe was dissolved within the liquid hexadecane core, allowing non-invasive measurements (spin-probe oximetry, electron spin resonance, ESR) of the oxygen concentration within the core. It was observed that the oxygen uptake rate was significantly reduced for both capsule types compared to a neat hexadecane solution containing the spin-probe, i.e. the slope of the non-steady state part of the ESR-curve was approximately one-third and one-ninth for the primary nanocellulose capsule and aggregated capsule, respectively, compared to that for the hexadecane sample. The transport of oxygen was modeled mathematically and by fitting to the experimental data, the oxygen diffusion coefficients of the capsule wall was determined. These values were, however, lower than expected and one plausible reason for this was that the ESR-technique underestimate the true oxygen uptake rate in the present systems at non-steady conditions, when the overall diffusion of oxygen was very slow.


Nano Letters | 2017

Three-Dimensional Nanometer Features of Direct Current Electrical Trees in Low-Density Polyethylene

Love K. H. Pallon; Fritjof Nilsson; Shun Yu; Dongming Liu; Ana Diaz; Mirko Holler; Xiangrong Chen; Stanislaw Gubanski; Mikael S. Hedenqvist; Richard T. Olsson; Ulf W. Gedde

Electrical trees are one reason for the breakdown of insulating materials in electrical power systems. An understanding of the growth of electrical trees plays a crucial role in the development of reliable high voltage direct current (HVDC) power grid systems with transmission voltages up to 1 MV. A section that contained an electrical tree in low-density polyethylene (LDPE) has been visualized in three dimensions (3D) with a resolution of 92 nm by X-ray ptychographic tomography. The 3D imaging revealed prechannel-formations with a lower density with the width of a couple of hundred nanometers formed around the main branch of the electrical tree. The prechannel structures were partially connected with the main tree via paths through material with a lower density, proving that the tree had grown in a step-by-step manner via the prestep structures formed in front of the main channels. All the prechannel structures had a size well below the limit of the Paschen law and were thus not formed by partial discharges. Instead, it is suggested that the prechannel structures were formed by electro-mechanical stress and impact ionization, where the former was confirmed by simulations to be a potential explanation with electro-mechanical stress tensors being almost of the same order of magnitude as the short-term modulus of low-density polyethylene.


Journal of Chemical Physics | 2017

First-principle simulations of electronic structure in semicrystalline polyethylene

Ali Moyassari; Mikael Unge; Mikael S. Hedenqvist; Ulf W. Gedde; Fritjof Nilsson

In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (∼0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.


IEEE Transactions on Dielectrics and Electrical Insulation | 2017

Influence of nanoparticle surface coating on electrical conductivity of LDPE/Al 2 O 3 nanocomposites for HVDC cable insulations

Dongming Liu; Anh T. Hoang; Amir Masoud Pourrahimi; Love K. H. Pallon; Fritjof Nilsson; Stanislaw Gubanski; Richard T. Olsson; Mikael S. Hedenqvist; Ulf W. Gedde

LDPE/metal oxide nanocomposites are promising materials for future high-voltage DC cable insulation. This paper presents data on the influence of the structure of the nanoparticle coating on the electrical conductivity of LDPE/Al2O3 nanocomposites. Al2O3 nanoparticles, 50 nm in size, were coated with a series of silanes with terminal alkyl groups of different lengths (methyl, w-octyl and n-octadecyl groups). The density of the coatings in vacuum was between 200 and 515 kg m−3, indicating substantial porosity in the coating. The dispersion of the nanoparticles in the LDPE matrix was assessed based on statistics for the nearest-neighbor particle distance. The electrical conductivity of the nanocomposites was determined at both 40 and 60 °C. The results show that an appropriate surface coating on the nanoparticles allowed uniform particle dispersion up to a filler loading of 10 wt.%, with a maximum reduction in the electrical conductivity by a factor of 35. The composites based on the most porous octyl-coated nanoparticles showed the greatest reduction in electrical conductivity and the lowest temperature coefficient of electrical conductivity of the composites studied.


Journal of Physics D | 2016

Conductivity simulations of field-grading composites

Fritjof Nilsson; Mikael Unge

The electrical conductivity and the percolation threshold of field grading polymer composites intended for high voltage applications were examined with representative elementary volume simulation methods based on percolation threshold modeling (PTM) and electrical network modeling (ENM). Comparisons were made with experimental conductivity data for SiC-EPDM composites with spherical and angular particles, using different filler fractions and electrical field strengths. With a known conductivity of the filler particles (powder), the simulations could predict the percolation threshold and the composite conductivity as functions of the electrical field for a wide range of SiC-filler fractions. The effects of morphology, dispersion and filler shape were examined and the simulations were able to explain the experimental difficulty of reaching sufficient reproducibility when designing composites with filler fractions close to a percolation threshold. PTM of composites containing hard-core/soft-shell spheres revealed a y = (a + bx)(−1/c) relationship (R 2 = 0.9997) between filler fraction and relative soft-shell thickness.


Journal of Materials Chemistry | 2017

Tailoring dielectric properties using designed polymer-grafted ZnO nanoparticles in silicone rubber

Martin Wåhlander; Fritjof Nilsson; Richard L. Andersson; Carmen Cobo Sanchez; Nathaniel Taylor; Anna Carlmark; Henrik Hillborg; Eva Malmström

Polymer grafts were used to tailor the interphases between ZnO nanoparticles (NPs) and silicone matrices. The final electrical properties of the nanocomposites were tuned by the grafted interphases, by controlling the inter-particle distance and the NP-morphology. The nanocomposites can be used in electrical applications where control of the resistivity is desired. Hansens solubility parameters were used to select a semi-compatible polymer for grafting to obtain anisotropic NP morphologies in silicone, and the grafted NPs self-assembled into various morphologies inside the silicone matrices. The morphologies in the semi-compatible nanocomposites could be tuned by steering the graft length of poly(n-butyl methacrylate) via entropic matrix-graft wetting using surface-initiated atom-transfer radical polymerization. Image analysis models were developed to calculate the radius of primary NPs, the fraction of aggregates, the dispersion, and the face-to-face distance of NPs. The dielectric properties of the nanocomposites were related to the morphology and the face-to-face distance of the NPs. The dielectric losses, above 100 Hz, for nanocomposites with grafted NPs were approximately one decade lower than those of pristine NPs. The isotropic nanocomposites increased the resistivity up to 100 times compared to that of neat silicone rubber, due to the trapping of charge carriers by the interphase of dispersed NPs and nanoclusters. On the other hand, the resistivity of anisotropic nanocomposites decreased 10–100 times when the inter-particle distance in continuous agglomerates was close to the hopping distance of charge carriers. The electrical breakdown strength increased for compatible isotropic nanocomposites, and the temperature dependence of the resistivity and the activation energy were ∼50% lower in the nanocomposites with grafted NPs. These flexible dielectric nanocomposites are promising candidates for low-loss high-voltage transmission cable accessories, mobile electronic devices, wearables and sensors.


Macromolecular Rapid Communications | 2017

Reduced and Surface‐Modified Graphene Oxide with Nonlinear Resistivity

Martin Wåhlander; Fritjof Nilsson; Richard L. Andersson; Anna Carlmark; Henrik Hillborg; Eva Malmström

Field-grading materials (FGMs) are used to reduce the probability for electrical breakdowns in critical regions of electrical components and are therefore of great importance. Usually, FGMs are heavily filled (40 vol.%) with semi-conducting or conducting particles. Here, polymer-grafted reduced graphene oxide (rGO) is used as a filler to accomplish percolated networks at very low filling ratios (<2 vol.%) in a semi-crystalline polymer matrix: poly(ethylene-co-butyl acrylate) (EBA). Various simulation models are used to predict the percolation threshold and the flake-to-flake distances, to complement the experimental results. A substantial increase in thermal stability of rGO is observed after surface modification, either by silanization or subsequent polymerizations. The non-linear DC resistivity of neat and silanized rGO and its trapping of charge-carriers in semi-crystalline EBA are demonstrated for the first time. It is shown that the polymer-grafted rGO improve the dispersibility in the EBA-matrix and that the graft length controls the inter-flake distances (i.e. charge-carrier hopping distances). By the appropriate selection of graft lengths, both highly resistive materials at 10 kV mm-1 and FGMs with a large and distinct drop in resistivity (six decades) are obtained, followed by saturation. The nonlinear drop in resistivity is attributed to narrow inter-flake distance distributions of grafted rGO.


International Journal of Polymer Science | 2015

Image Analysis Determination of the Influence of Surface Structure of Silicone Rubbers on Biofouling

Sevil Atarijabarzadeh; Fritjof Nilsson; Henrik Hillborg; Sigbritt Karlsson; Emma Strömberg

This study focuses on how the texture of the silicone rubber material affects the distribution of microbial growth on the surface of materials used for high voltage insulation. The analysis of surface wetting properties showed that the textured surfaces provide higher receding contact angles and therefore lower contact angle hysteresis. The textured surfaces decrease the risk for dry band formation and thus preserve the electrical properties of the material due to a more homogeneous distribution of water on the surface, which, however, promotes the formation of more extensive biofilms. The samples were inoculated with fungal suspension and incubated in a microenvironment chamber simulating authentic conditions in the field. The extent and distribution of microbial growth on the textured and plane surface samples representing the different parts of the insulator housing that is shank and shed were determined by visual inspection and image analysis methods. The results showed that the microbial growth was evenly distributed on the surface of the textured samples but restricted to limited areas on the plane samples. More intensive microbial growth was determined on the textured samples representing sheds. It would therefore be preferable to use the textured surface silicone rubber for the shank of the insulator.

Collaboration


Dive into the Fritjof Nilsson's collaboration.

Top Co-Authors

Avatar

Mikael S. Hedenqvist

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ulf W. Gedde

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Carlmark

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eva Malmström

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Henrik Hillborg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Martin Wåhlander

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard T. Olsson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dirk W. Schubert

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Love K. H. Pallon

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard L. Andersson

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge