Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fritz A. Mühlschlegel is active.

Publication


Featured researches published by Fritz A. Mühlschlegel.


Eukaryotic Cell | 2006

Cryptococcus neoformans Senses CO2 through the Carbonic Anhydrase Can2 and the Adenylyl Cyclase Cac1

Estelle Mogensen; Guilhem Janbon; James Chaloupka; Clemens Steegborn; Man Shun Fu; Frédérique Moyrand; Torsten Klengel; David S. Pearson; Michael A. Geeves; Jochen Buck; Lonny R. Levin; Fritz A. Mühlschlegel

ABSTRACT Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO2) to infected hosts (5% CO2) is the induction of capsule biosynthesis. In cells, CO2 is hydrated to bicarbonate in a spontaneous reaction that is accelerated by carbonic anhydrases. Here we show that C. neoformans contains two β-class carbonic anhydrases, Can1 and Can2. We further demonstrate that CAN2, but not CAN1, is abundantly expressed and essential for the growth of C. neoformans in its natural environment, where CO2 concentrations are limiting. Structural studies reveal that Can2 forms a homodimer in solution. Our data reveal Can2 to be the main carbonic anhydrase and suggest a physiological role for bicarbonate during C. neoformans growth. Bicarbonate directly activates the C. neoformans Cac1 adenylyl cyclase required for capsule synthesis. We show that this specific activation is optimal at physiological pH.


Molecular and Cellular Biology | 2000

Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans.

Abdelmalic El Barkani; Oliver Kurzai; William A. Fonzi; Ana Ramón; Amalia Porta; Matthias Frosch; Fritz A. Mühlschlegel

ABSTRACT Morphological development of the fungal pathogen Candida albicans is profoundly affected by ambient pH. Acidic pH restricts growth to the yeast form, whereas neutral pH permits development of the filamentous form. Superimposed on the pH restriction is a temperature requirement of approximately 37°C for filamentation. The role of pH in development was investigated by selecting revertants of phr2Δ mutants that had gained the ability to grow at acid pH. The extragenic suppressors in two independent revertants were identified as nonsense mutations in the pH response regulatorRIM101 (PRR2) that resulted in a carboxy-terminal truncation of the open reading frame. These dominant active alleles conferred the ability to filament at acidic pH, to express PHR1, an alkaline-expressed gene, at acidic pH, and to repress the acid-expressed gene PHR2. It was also observed that both the wild-type and mutant alleles could act as multicopy suppressors of the temperature restriction on filamentation, allowing extensive filamentation at 29°C. The ability of the activated alleles to promote filamentation was dependent upon the developmental regulator EFG1. The results suggest thatRIM101 is responsible for the pH dependence of hyphal development.


Eukaryotic Cell | 2011

The Quorum-Sensing Molecules Farnesol/Homoserine Lactone and Dodecanol Operate via Distinct Modes of Action in Candida albicans

Rebecca A. Hall; Kara Turner; James Chaloupka; Fabien Cottier; Luisa De Sordi; Dominique Sanglard; Lonny R. Levin; Jochen Buck; Fritz A. Mühlschlegel

ABSTRACT Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanols mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules.


PLOS Pathogens | 2010

CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans.

Rebecca A. Hall; Luisa De Sordi; Donna M. MacCallum; Hüsnü Topal; Rebecca Eaton; James W. Bloor; Gary K. Robinson; Lonny R. Levin; Jochen Buck; Yue Wang; Neil A. R. Gow; Clemens Steegborn; Fritz A. Mühlschlegel

When colonising host-niches or non-animated medical devices, individual cells of the fungal pathogen Candida albicans expand into significant biomasses. Here we show that within such biomasses, fungal metabolically generated CO2 acts as a communication molecule promoting the switch from yeast to filamentous growth essential for C. albicans pathology. We find that CO2-mediated intra-colony signalling involves the adenylyl cyclase protein (Cyr1p), a multi-sensor recently found to coordinate fungal responses to serum and bacterial peptidoglycan. We further identify Lys 1373 as essential for CO2/bicarbonate regulation of Cyr1p. Disruption of the CO2/bicarbonate receptor-site interferes selectively with C. albicans filamentation within fungal biomasses. Comparisons between the Drosophila melanogaster infection model and the mouse model of disseminated candidiasis, suggest that metabolic CO2 sensing may be important for initial colonisation and epithelial invasion. Our results reveal the existence of a gaseous Candida signalling pathway and its molecular mechanism and provide insights into an evolutionary conserved CO2-signalling system.


Bioorganic & Medicinal Chemistry Letters | 2008

Carbonic anhydrase inhibitors: inhibition of the beta-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions.

Alessio Innocenti; Fritz A. Mühlschlegel; Rebecca A. Hall; Clemens Steegborn; Andrea Scozzafava; Claudiu T. Supuran

The catalytic activity and inhibition of the beta-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Candida albicans (Nce103) and Cryptococcus neoformans (Can2) with inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate were investigated. The two enzymes showed appreciable CO(2) hydrase activity (k(cat) in the range of (3.9-8.0)x10(5)s(-1), and k(cat)/K(m) in the range of (4.3-9.7)x10(7)M(-1)s(-1)). Can2 was weakly inhibited by cyanide and sulfamic acid (K(I)s of 8.22-13.56 mM), while all other anions displayed more potent inhibition. Nce103 was strongly inhibited by cyanide and carbonate (K(I)s of 10-11 microM), and weakly inhibited by sulfate, phenylboronic, and phenyl arsonic acid (K(I)s of 14.15-30.85 mM). These data demonstrate that pathogenic, fungal beta-CAs may be targets for the development of antifungals that have a novel mechanism of action.


Bioorganic & Medicinal Chemistry Letters | 2012

Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata.

Simona Maria Monti; Alfonso Maresca; Francesca Viparelli; Fabrizio Carta; Giuseppina De Simone; Fritz A. Mühlschlegel; Andrea Scozzafava; Claudiu T. Supuran

A series of N-mono- and N,N-disubstituted dithiocarbamates have been investigated as inhibitors of three β-carbonic anhydrases (CAs, EC 4.2.1.1) from the fungal pathogens Cryptococcus neoformans, Candida albicans and Candida glabrata, that is, Can2, CaNce103 and CgNce103, respectively. These enzymes were inhibited with efficacies between the subnanomolar to the micromolar range, depending on the substitution pattern at the nitrogen atom from the dithiocarbamate zinc-binding group. This new class of β-CA inhibitors may have the potential for developing antifungal agents with a diverse mechanism of action compared to the clinically used drugs for which drug resistance was reported, and may also explain the efficacy of dithiocarbamates as agricultural antifungal agents.


Journal of Medicinal Chemistry | 2011

Natural Product-Based Phenols as Novel Probes for Mycobacterial and Fungal Carbonic Anhydrases

Rohan Andrew Davis; Andreas Hofmann; Asiah Osman; Rebecca A. Hall; Fritz A. Mühlschlegel; Daniela Vullo; Alessio Innocenti; Claudiu T. Supuran; Sally-Ann Poulsen

In order to discover novel probes that may help in the investigation and control of infectious diseases through a new mechanism of action, we have evaluated a library of phenol-based natural products (NPs) for enzyme inhibition against four recently characterized pathogen β-family carbonic anhydrases (CAs). These include CAs from Mycobacterium tuberculosis, Candida albicans, and Cryptococcus neoformans as well as α-family human CA I and CA II for comparison. Many of the NPs selectively inhibited the mycobacterial and fungal β-CAs, with the two best performing compounds displaying submicromolar inhibition with a preference for fungal over human CA inhibition of more than 2 orders of magnitude. These compounds provide the first example of non-sulfonamide inhibitors that display β over α CA enzyme selectivity. Structural characterization of the library compounds in complex with human CA II revealed a novel binding mode whereby a methyl ester interacts via a water molecule with the active site zinc.


Eukaryotic Cell | 2004

Inactivation of Transcription Factor Gene ACE2 in the Fungal Pathogen Candida glabrata Results in Hypervirulence

Mohammed Kamran; Ana-Maria Calcagno; Helen Findon; Elaine Bignell; Michael D. Jones; Peter Warn; Philip Hopkins; David W. Denning; Geraldine Butler; Thomas R. Rogers; Fritz A. Mühlschlegel; Ken Haynes

ABSTRACT During an infection, the coordinated orchestration of many factors by the invading organism is required for disease to be initiated and to progress. The elucidation of the processes involved is critical to the development of a clear understanding of host-pathogen interactions. For Candida species, the inactivation of many fungal attributes has been shown to result in attenuation. Here we demonstrate that the Candida glabrata homolog of the Saccharomyces cerevisiae transcription factor gene ACE2 encodes a function that mediates virulence in a novel way. Inactivation of C. glabrata ACE2 does not result in attenuation but, conversely, in a strain that is hypervirulent in a murine model of invasive candidiasis. C. glabrata ace2 null mutants cause systemic infections characterized by fungal escape from the vasculature, tissue penetration, proliferation in vivo, and considerable overstimulation of the proinflammatory arm of the innate immune response. Compared to the case with wild-type fungi, mortality occurs much earlier in mice infected with C. glabrata ace2 cells, and furthermore, 200-fold lower doses are required to induce uniformly fatal infections. These data demonstrate that C. glabrata ACE2 encodes a function that plays a critical role in mediating the host-Candida interaction. It is the first virulence-moderating gene to be described for a Candida species.


Bioorganic & Medicinal Chemistry | 2009

Carbonic anhydrase inhibitors. Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with aliphatic and aromatic carboxylates

Alessio Innocenti; Rebecca A. Hall; Christine Schlicker; Fritz A. Mühlschlegel; Claudiu T. Supuran

The inhibition of the beta-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with carboxylates such as the C1-C5 aliphatic carboxylates, oxalate, malonate, maleate, malate, pyruvate, lactate, citrate and some benzoates has been investigated. The best Can2 inhibitors were acetate and maleate (K(I)s of 7.3-8.7 microM), whereas formate, acetate, valerate, oxalate, maleate, citrate and 2,3,5,6-tetrafluorobenzoate showed less effective inhibition, with K(I)s in the range of 42.8-88.6 microM. Propionate, butyrate, malonate, L-malate, pyruvate, L-lactate and benzoate, were weak Can2 inhibitors, with inhibition constants in the range of 225-1267 microM. Nce103 was more susceptible to inhibition with carboxylates compared to Can2, with the best inhibitors (maleate, benzoate, butyrate and malonate) showing K(I)s in the range of 8.6-26.9 microM. L-Malate and pyruvate together with valerate were the less efficient Nce103 inhibitors (K(I)s of 87.7-94.0 microM), while the remaining carboxylates showed a compact behavior of efficient inhibitors (K(I)s in the range of 35.1-61.6 microM). Notably the inhibition profiles of the two fungal beta-CAs was very different from that of the ubiquitous host enzyme hCA II (belonging to the alpha-CA family), with maleate showing selectivity ratios of 113.6 and 115 for Can2 and Nce103, respectively, over hCA II inhibition. Therefore, maleate is a promising starting lead molecule for the development of better, low nanomolar, selective beta-CA inhibitors.


Molecular Microbiology | 2003

Candida glabrata STE12 is required for wild‐type levels of virulence and nitrogen starvation induced filamentation

Ana-Maria Calcagno; Elaine Bignell; Peter Warn; Michael D. Jones; David W. Denning; Fritz A. Mühlschlegel; Thomas R. Rogers; Ken Haynes

The highly conserved fungal Ste12 transcription factor family of proteins play critical roles in the regulation of many cellular processes including mating, cell wall biosynthesis, filamentation and invasive growth. They are also important mediators of fungal virulence. The Candida glabrata STE12 homologue was cloned. The encoded protein has a single DNA binding homeodomain but lacks both a C2H2 zinc finger DNA binding domain and an apparent Dig1/Dig2 regulatory motif. Candida glabrata STE12 can functionally complement the nitrogen starvation induced filamentation and mating defects of Saccharomyces cerevisiae ste12 mutants. We also show that C. glabrata STE12 is required for nitrogen starvation‐induced filamentation as ste12 mutants rarely produce pseudohyphae on nitrogen depeleted media. Finally we describe a novel murine model of C. glabrata systemic disease and use this to demonstrate that C. glabrata ste12 mutants, although still able to cause disease, are attenuated for virulence compared with STE12 reconstituted strains. Candida glabrata STE12 is therefore the first virulence factor encoding gene to be described in this increasingly important fungal pathogen.

Collaboration


Dive into the Fritz A. Mühlschlegel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge