Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fu-Xing Zhu is active.

Publication


Featured researches published by Fu-Xing Zhu.


Plant Disease | 2014

Dimethachlon Resistance in Sclerotinia sclerotiorum in China

Feng Zhou; Xiao-Lei Zhang; Jin-Li Li; Fu-Xing Zhu

The dicarboximide fungicide dimethachlon has been widely used for controlling Sclerotinia sclerotiorum in China for more than a decade. To assess the current status of dimethachlon resistance in S. sclerotiorum in China, 2,424 isolates were collected from disease-infected oilseed rape and soybean plants in five provinces of China in 2011 and 2012, and dimethachlon resistance was monitored by mycelial growth inhibition method on potato dextrose agar (PDA) media. Dimethachlon at 5 μg/ml was used as a discriminatory dose to detect resistance in all isolates, and 50% effective concentration values were determined for all dimethachlon-resistant isolates and some sensitive isolates. No dimethachlon resistance was detected in isolates from Anhui province (eastern China), Gansu province (northwestern China), and Qinghai province (western China). In Hunan province (central China), 3 of 268 (1.12%) isolates collected from oilseed rape plants in 2012 were resistant to dimethachlon, and the resistance ratios for the three resistant isolates were 4.56, 32.70, and 105.53, respectively. In Heilongjiang province (northeastern China), 8 of 243 (3.29%) isolates collected from soybean plants in 2011 were resistant to dimethachlon, with resistance ratios of 5.57 to 94.80; 11 of 409 (2.69%) isolates collected in 2012 were resistant to dimethachlon, with resistance ratios of 3.21 to 9.69. Cross-resistance studies showed that there was positive cross-resistance between dimethachlon and iprodione, procymidone, and the N-phenyl carbamate fungicide diethofencarb. No cross-resistance was found between dimethachlon and carbendazim, tebuconazole, kresoxim-methyl, thiram, and boscalid. Compared with the sensitive isolates of S. sclerotiorum, the field-dimethachlon-resistant isolates were more sensitive to osmotic pressure, grew more slowly on PDA media, and were less pathogenic on leaves of oilseed rape.


Comparative Biochemistry and Physiology B | 2014

Peroxiredoxin 5 from common cutworm (Spodoptera litura) acts as a potent antioxidant enzyme

Hu Wan; Tinghao Kang; Sha Zhan; Hong You; Fu-Xing Zhu; Kwang Sik Lee; Haigang Zhao; Byung Rae Jin; Jianhong Li

In this study, we describe the cloning and characterization of a Prx from the common cutworm Spodoptera litura (SlPrx5). The SlPrx5 cDNA contains an open reading frame of 477 bp encoding a predicted protein of 159 amino acid residues, 16.902 kDa, and an isoelectric point of 7.68. Furthermore, the deduced amino acid sequence of the SlPrx5 cDNA showed 86% identity to Papilio xuthus Prx5, 72% to Aedes aegypti Prx5, and 64-67% to other insect Prxs. A phylogenetic analysis further revealed that the deduced amino acid sequence of SlPrx5 groups within the atypical 2-Cys Prx cluster. Recombinant SlPrx5 (20 kDa) purified from baculovirus-infected insect cells was found to reduce H2O2 in the presence of electrons donated by dithiothreitol and protect super-coiled DNA from damage by metal-catalyzed oxidation in vitro. During S. litura development, SlPrx5 is constitutively expressed in the epidermis, fat body, and midgut, with the highest expression occurring in the sixth-instar larval stage in the fat body and midgut. Additionally, SlPrx5 mRNA expression was up-regulated after injection with H2O2, cumene hydroperoxide, indoxacarb, and metaflumizone. A disc diffusion assay indicated that recombinant SlPrx5 can play a functional role in protecting cells from oxidative stress in vivo. These results provide insight into the role of SlPrx5 during development and the oxidative stress response of S. litura.


Plant Disease | 2014

First Report of Dimethachlon Resistance in Field Isolates of Sclerotinia sclerotiorum on Oilseed Rape in Shaanxi Province of Northwestern China

Feng Zhou; Fu-Xing Zhu; X. L. Zhang; A. S. Zhang

Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing diseases in a wide range of plants, including oilseed rape (3). Substantial economic losses caused by S. sclerotiorum have been reported in the United States, Canada, Brazil, South Africa, Hungary, India, Nepal, and Japan (1). Application of fungicides is the principal tool for controlling S. sclerotiorum because of lack of high level of host resistance. Dicarboximide fungicides such as dimethachlon have been widely used to control S. sclerotiorum in recent years in China and field isolates with reduced sensitivity to dimethachlon have been reported in Jiangsu Province of eastern China (2). In order to understand the current status of dimethachlon resistance in S. sclerotiorum isolates of northwestern China, 196 and 344 isolates of S. sclerotiorum collected from oilseed rape fields in 10 counties throughout Shaanxi Province in 2011 and 2012, respectively, were assayed for sensitivity to dimethachlon using 5 μg ml-1 dimethachlon as a discriminatory dose. Mycelial plugs (6 mm in diameter) cut from the margin of a 48-h-old colony were placed in the center of petri dishes containing potato dextrose agar (PDA) amended with 5 μg ml-1 dimethachlon; PDA without fungicide served as the control. Cultures were incubated at 26°C and colony growth was measured after 72 h of incubation. Isolates that showed growth on PDA amended with fungicide were tentatively considered resistant to dimethachlon, whereas the completely inhibited isolates were considered sensitive. Results showed that 1.02% or 2 isolates of the 196 isolates collected in 2011 and 3.78% or 13 isolates of the 344 isolates collected in 2012 were resistant to dimethachlon. For all the isolates considered resistant and 42 randomly selected sensitive isolates, 50% effective concentrations (EC50) were determined on PDA amended with a series of dimethachlon concentrations. The average EC50 value of dimethachlon for sensitive isolates was 0.29 ± 0.02 μg ml-1 Resistance ratios (EC50 of resistant isolate / average EC50 of sensitive isolates) for the two resistant isolates detected in 2011 were 10.28 and 23.83, respectively, whereas resistance ratios for the 13 resistant isolates detected in 2012 ranged from 24.90 to 101.97. The average EC50 value of dimethachlon for the 13 resistant isolates detected in 2012 was 19.05 μg ml-1, and EC50 values for the two resistant isolates detected in 2011 were 2.98 and 6.91 μg ml-1, respectively. These results indicated that both resistance frequency and resistance level increased from 2011 to 2012. Bioassay results of three resistant isolates indicated that there was positive cross-resistance between dimethachlon and other dicarboximide fungicides such as iprodione and procymidone. To our knowledge, this is the first report of dimethachlon resistance in S. sclerotiorum in Shaanxi Province of northwestern China. The molecular mechanism of dimethachlon resistance in field isolates of S. sclerotiorum remains to be studied. Although resistance frequency is low at present, dimethachlon resistance should be kept in mind and fungicide resistance management tactics such as use of biological control agents, fungicide tank-mixing, or alternating dimethachlon with other fungicides having different modes of action is recommended in controlling S. sclerotiorum. References: (1) M. D. Bolton et al. Mol Plant Pathol. 7:1, 2006. (2) H. X. Ma et al. Plant Dis. 93:36, 2009. (3) L. H. Prudy. Phytopathology 69:875, 1979.


Plant Disease | 2014

Stimulatory Effects of Sublethal Doses of Dimethachlon on Sclerotinia sclerotiorum

Feng Zhou; Hong-Jie Liang; Ya-Li Di; Hong You; Fu-Xing Zhu

Growth and virulence stimulations of sublethal doses of fungicides on plant-pathogenic fungi and oomycetes have been reported and the stimulatory effects are potentially relevant to plant disease management. Sclerotinia sclerotiorum is one of the most devastating and economically important necrotrophic fungal phytopathogens, capable of infecting more than 400 species of plants worldwide. In order to study stimulatory effects of sublethal doses of fungicides on S. sclerotiorum, 55 dimethachlon-sensitive isolates and 3 dimethachlon-resistant isolates of S. sclerotiorum were assayed to determine effects of sublethal doses of dimethachlon on mycelial growth rate on potato dextrose agar (PDA) media and virulence on oilseed rape plants. Results showed that all 3 dimethachlon-resistant isolates and 13 of the 55 sensitive isolates exhibited stimulatory responses to sublethal doses of dimethachlon. Dimethachlon-resistant isolates grew significantly (P < 0.05) faster on PDA media amended with dimethachlon at 0.5 to 4 μg/ml than on fungicide-free PDA media. As for virulence on detached leaves of oilseed rape plants, lesion diameters of dimethachlon-resistant isolates after growth on PDA media amended with dimethachlon at 0.5 to 2 μg/ml were significantly larger (P < 0.05) than the control. The maximum stimulatory effects were 42.40 to 59.80%. In pot experiments, for both dimethachlon-sensitive and -resistant isolates, significant (P < 0.05) virulence stimulations were observed after spraying with dimethachlon at a concentration of 2 μg/ml. After growing on dimethachlon-amended PDA media, H2O2 sensitivity of S. sclerotiorum decreased significantly (P < 0.05) compared with the nonamended PDA control.


Plant Disease | 2015

Baseline Sensitivity of Pyraclostrobin and Toxicity of SHAM to Sclerotinia sclerotiorum

Hong-Jie Liang; Ya-Li Di; Jin-Li Li; Hong You; Fu-Xing Zhu

Sclerotinia sclerotiorum is a cosmopolitan plant pathogen notable for its wide host range. The quinone outside inhibitor (QoI) fungicide pyraclostrobin has not been registered for control of S. sclerotiorum in China. In this study, baseline sensitivity of pyraclostrobin was established based on effective concentration for 50% inhibition of mycelial growth (EC50) values of 153 isolates of S. sclerotiorum collected from five provinces of China and toxicity of alternative oxidase inhibitor salicylhydroxamic acid (SHAM) to S. sclerotiorum was determined. Results showed that the frequency distribution of EC50 values of the 153 isolates was unimodal but with a right-hand tail. The mean EC50 value was 0.1027 μg/ml and the range of EC50 values was 0.0124 to 0.6324 μg/ml. Applied as a preventive fungicide in pot experiments, pyraclostrobin at 5, 15, and 45 μg/ml provided control efficacies of 61, 77, and 100%, respectively. There was no positive cross-resistance between pyraclostrobin and carbendazim or dimethachlon. EC50 values for SHAM against four isolates of S. sclerotiorum were 44.4, 51.8, 54.4, and 68.7 μg/ml. SHAM at 20 μg/ml could significantly increase not only the inhibitory effect of pyraclostrobin on mycelial growth on potato dextrose agar media but also the control efficacy in planta. These results indicated that SHAM should not be added into artificial media in in vitro assay of S. sclerotiorum sensitivity to pyraclostrobin. This has broad implications for assay of sensitivity of fungal pathogen to QoI fungicides.


Plant Disease | 2015

Pathogenicity Stimulation of Sclerotinia sclerotiorum by Subtoxic Doses of Carbendazim

Ya-Li Di; Zu-Qing Zhu; Xiao-Ming Lu; Fu-Xing Zhu

Sclerotinia sclerotiorum is a devastating ascomycete fungus capable of infecting more than 400 species of plants worldwide. Carbendazim has been a principal fungicide for control of this pathogen and high levels of carbendazim resistance have been reported in eastern China. In this study, stimulatory effect of subtoxic doses of carbendazim on pathogenicity of S. sclerotiorum was investigated. All seven field resistant isolates with EC50 values greater than 1,000 μg/ml exhibited stimulated pathogenicity toward detached leaves of rapeseed at subtoxic concentrations of carbendazim. Detailed studies on pathogenicity of two resistant isolates AH-17 and LJ-86 toward potted rapeseed plants and detached leaves demonstrated that carbendazim at 0.2 to 5 μg/ml could consistently stimulate significantly higher (P < 0.05) pathogenicity than the control. On potted rapeseed plants, the percent stimulations on pathogenicity ranged from 18.8 to 22.0% for isolate AH-17 and from 15.1 to 23.2% for isolate LJ-86. On detached leaves of rapeseed, the percent stimulations ranged from 18.7 to 31.29% for isolate AH-17 and from 16.7 to 24.3% for isolate LJ-86. Studies on stimulation mechanism indicated that secretion of oxalic acid and tolerance to oxidative stresses H2O2 and paraquat after exposed to subtoxic doses of carbendazim did not change significantly. These results have profound implications for judicious application of fungicides and sustainable management of fungicide resistance.


Plant Disease | 2016

Time Course of Carbendazim Stimulation on Pathogenicity of Sclerotinia sclerotiorum Indicates a Direct Stimulation Mechanism

Ya-Li Di; Xiao-Ming Lu; Zu-Qing Zhu; Fu-Xing Zhu

Previous studies have demonstrated that subtoxic doses of carbendazim have a stimulatory effect on pathogenicity of Sclerotinia sclerotiorum on rapeseed plants. The present study focused on the time-course profile of the stimulatory effect and its relevance to stimulation mechanisms. At 12 h postinoculation (HPI), initial necrotic lesions were visible only for rapeseed leaves treated with carbendazim at 0.2 and 1 μg/ml, whereas no disease symptoms were observed for the nontreated control. At 18 HPI, carbendazim stimulation on pathogenicity was more obvious than at 12 HPI. Study with scanning electron microscopy demonstrated that no discernable differences in the development of disease symptoms could be detected at 8 HPI. However, at 12 HPI, necrotic symptoms of the epidermal cells were apparent only for leaves sprayed with carbendazim. These results indicated that stimulations on pathogenicity occurred in the first 12 h, implying that direct stimulation rather than overcompensation to the disruption of homeostasis was likely to be the underlying mechanism for pathogenicity stimulation. Greenhouse experiments showed that spraying carbendazim at 400 μg/ml on potted rapeseed plants had statistically significant (P < 0.05) stimulations on pathogenicity for inoculations at 1, 3, 5, and 7 days after application (DAA). The stimulation action eventually disappeared for inoculations at 14 DAA. Mycelia grown on potato dextrose agar (PDA) supplemented with carbendazim at 400 μg/ml were more pathogenic than the nontreated control. However, after additional growth of the mycelia on fungicide-free PDA for 2 days, the stimulatory effect disappeared completely, indicating that carbendazim was indispensable for pathogenicity stimulations. Studies on biochemical mechanisms indicated that cell-wall-degrading enzymes such as cellulase, pectinase, and polygalacturonase were not involved in pathogenicity stimulations. These results will advance our understanding of the nature and mechanisms of fungicide stimulation on fungal pathogenicity and, thus, are valuable for judicious applications of fungicides.


Pesticide Biochemistry and Physiology | 2017

Molecular and biochemical characterization of dimethachlone resistant isolates of Sclerotinia sclerotiorum

Jinli Li; Tinghao Kang; Khaled Mohamed Ahmed Talab; Fu-Xing Zhu; Jianhong Li

Sclerotinia sclerotiorum is a necrotrophic fungal plant pathogen with a broad host range. The dicarboximide fungicide dimethachlone has been used to control this pathogen for more than a decade and resistance to dimethachlone has recently been reported in China. Compared with sensitive isolates, the three dimethachlone resistant isolates with resistance ratios of 78.3, 85.5, and 94.8 exhibited significantly (P<0.05) higher cell membrane permeability and peroxidase and polyphenol oxidase activities. Dimethachlone at 0.25μg/mL significantly increased cell membrane permeability and enhanced activity of the two enzymes in both resistant and sensitive isolates. There were no significant differences in glycerol or oxalate content between the resistant and sensitive isolates. Dimethachlone treatment increased glycerol content in the resistant isolates and reduced in the sensitive isolates (P<0.01). Sequencing of three genes involved in two-component signal pathway and of three genes in mitogen-activated protein (MAP) kinase cascade demonstrated that the dimethachlone resistant isolates HLJ4 and HLJ6 harbored point mutations of I232T and G1087D, respectively, in the deduce amino acid sequence of the histidine kinase (HK) gene Sshk. HLJ4 had a point mutation of P96L in the deduced amino acid sequence of the MAP kinase-kinase gene SsPbs. The expression levels of the Sshk gene were higher in HLJ4 and HLJ6 than in HLJ3 and the sensitive isolate HLJMG2, and transcription of the Sshk gene was up-regulated by dimethachlone for the three resistant isolates.


Plant Disease | 2018

Stimulatory Effects of Flusilazole on Virulence of Sclerotinia sclerotiorum

Xiaoming Lu; Ran Zhang; Menglong Cong; Jianhong Li; Fu-Xing Zhu

Flusilazole, a member of the demethylation inhibitor fungicides, is highly efficacious for control of Sclerotinia sclerotiorum. To achieve judicious applications of flusilazole, its hormetic effects on virulence of S. sclerotiorum were investigated. Flusilazole sprayed at concentrations from 0.02 to 0.5 μg/ml caused statistically significant (P < 0.05) stimulatory effects on virulence of S. sclerotiorum to potted rapeseed plants, and the maximum stimulation magnitudes were 11.0 and 10.7% for isolates GS-7 and HN-24, respectively. Studies on the time course of the infection process showed that a stimulatory effect on virulence could be discerned at 18 h postinoculation, indicating a direct stimulation mechanism rather than an overcompensation for initial inhibitions. In order to determine whether the stimulations were caused mainly by effects of flusilazole on S. sclerotiorum or on rapeseed plants, mycelia grown on flusilazole-amended potato dextrose agar (PDA) media were inoculated on leaves of rapeseed plants without spraying the fungicide. Mycelium radial growth on PDA supplemented with flusilazole at concentrations from 0.005 to 0.16 μg/ml was inhibited by 10.11 to 48.7% for isolate GS-7 and by 4.1 to 24.9% for isolate HN-24. Observations with a scanning electron microscope showed that flusilazole in PDA at 0.04 and 0.08 μg/ml caused slightly deformed mycelia and twisted mycelial tips. Nevertheless, after inoculating on leaves of potted rapeseed plants, virulence of the inhibited mycelia was statistically significantly (P < 0.05) greater than that of the nontreated control, and the maximum stimulation magnitudes were 16.2 and 19.8% for isolates GS-7 and HN-24, respectively. Studies on a physiological mechanism for virulence stimulations showed that tolerance to hydrogen peroxide did not increase significantly for mycelia grown on flusilazole-amended PDA, thus excluding the possibility of tolerance to reactive oxygen species as a potential mechanism for virulence stimulations.


Crop Protection | 2014

Field evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) in China

Xiaolei Zhang; Xiangyang Liu; Fu-Xing Zhu; Jianhong Li; Hong You; Peng Lu

Collaboration


Dive into the Fu-Xing Zhu's collaboration.

Top Co-Authors

Avatar

Ya-Li Di

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianhong Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zu-Qing Zhu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hong-Jie Liang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jin-Li Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Ming Lu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Feng Zhou

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hong You

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jun Zhang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shun He

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge