Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuchou Tang is active.

Publication


Featured researches published by Fuchou Tang.


Nature Methods | 2009

mRNA-Seq whole-transcriptome analysis of a single cell.

Fuchou Tang; Catalin Barbacioru; Yangzhou Wang; Ellen Nordman; Clarence Lee; Nanlan Xu; Xiaohui Wang; John Bodeau; Brian B. Tuch; Asim Siddiqui; Kaiqin Lao; M. Azim Surani

Next-generation sequencing technology is a powerful tool for transcriptome analysis. However, under certain conditions, only a small amount of material is available, which requires more sensitive techniques that can preferably be used at the single-cell level. Here we describe a single-cell digital gene expression profiling assay. Using our mRNA-Seq assay with only a single mouse blastomere, we detected the expression of 75% (5,270) more genes than microarray techniques and identified 1,753 previously unknown splice junctions called by at least 5 reads. Moreover, 8–19% of the genes with multiple known transcript isoforms expressed at least two isoforms in the same blastomere or oocyte, which unambiguously demonstrated the complexity of the transcript variants at whole-genome scale in individual cells. Finally, for Dicer1−/− and Ago2−/− (Eif2c2−/−) oocytes, we found that 1,696 and 1,553 genes, respectively, were abnormally upregulated compared to wild-type controls, with 619 genes in common.


Nature Structural & Molecular Biology | 2013

Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells

Liying Yan; Mingyu Yang; Hongshan Guo; Lu Yang; Jun Wu; Rong Li; Ping Liu; Ying Lian; Xiaoying Zheng; Jie Yan; Jin Huang; Ming Li; Xinglong Wu; Lu Wen; Kaiqin Lao; Ruiqiang Li; Jie Qiao; Fuchou Tang

Measuring gene expression in individual cells is crucial for understanding the gene regulatory network controlling human embryonic development. Here we apply single-cell RNA sequencing (RNA-Seq) analysis to 124 individual cells from human preimplantation embryos and human embryonic stem cells (hESCs) at different passages. The number of maternally expressed genes detected in our data set is 22,687, including 8,701 long noncoding RNAs (lncRNAs), which represents a significant increase from 9,735 maternal genes detected previously by cDNA microarray. We discovered 2,733 novel lncRNAs, many of which are expressed in specific developmental stages. To address the long-standing question whether gene expression signatures of human epiblast (EPI) and in vitro hESCs are the same, we found that EPI cells and primary hESC outgrowth have dramatically different transcriptomes, with 1,498 genes showing differential expression between them. This work provides a comprehensive framework of the transcriptome landscapes of human early embryos and hESCs.


Cell Stem Cell | 2008

Dynamic Equilibrium and Heterogeneity of Mouse Pluripotent Stem Cells with Distinct Functional and Epigenetic States

Katsuhiko Hayashi; Susana M. Chuva de Sousa Lopes; Fuchou Tang; M. Azim Surani

Embryonic stem cells (ESCs) are apparently homogeneous self-renewing cells, but we observed heterogeneous expression of Stella in ESCs, which is a marker of pluripotency and germ cells. Here we show that, whereas Stella-positive ESCs were like the inner cell mass (ICM), Stella-negative cells were like the epiblast cells. These states were interchangeable, which reflects the metastability and plasticity of ESCs. The established equilibrium was skewed reversibly in the absence of signals from feeder cells, which caused a marked shift toward an epiblast-like state, while trichostatin A, an inhibitor of histone deactelylase, restored Stella-positive population. The two populations also showed different histone modifications and striking functional differences, as judged by their potential for differentiation. The Stella-negative ESCs were more like the postimplantation epiblast-derived stem cells (EpiSCs), albeit the stella locus was repressed by DNA methylation in the latter, which signifies a robust epigenetic boundary between ESCs and EpiSCs.


Cell Stem Cell | 2010

Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis.

Fuchou Tang; Catalin Barbacioru; Siqin Bao; Caroline Lee; Ellen Nordman; Xiaohui Wang; Kaiqin Lao; M. Azim Surani

Summary During the transition from the inner cell mass (ICM) cells of blastocysts to pluripotent embryonic stem cells (ESCs) in vitro, a normal developmental program is replaced in cells that acquire a capacity for infinite self-renewal and pluripotency. We explored the underlying mechanism of this switch by using RNA-Seq transcriptome analysis at the resolution of single cells. We detected significant molecular transitions and major changes in transcript variants, which include genes for general metabolism. Furthermore, the expression of repressive epigenetic regulators increased with a concomitant decrease in gene activators that might be necessary to sustain the inherent plasticity of ESCs. Furthermore, we detected changes in microRNAs (miRNAs), with one set that targets early differentiation genes while another set targets pluripotency genes to maintain the unique ESC epigenotype. Such genetic and epigenetic events may contribute to a switch from a normal developmental program in adult cells during the formation of diseased tissues, including cancers.


PLOS ONE | 2008

MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.

Katsuhiko Hayashi; Susana M. Chuva de Sousa Lopes; Masahiro Kaneda; Fuchou Tang; Petra Hajkova; Kaiqin Lao; Dónal O'Carroll; Partha P. Das; Alexander Tarakhovsky; Eric A. Miska; M. Azim Surani

Background MicroRNAs (miRNAs) are critical regulators of transcriptional and post-transcriptional gene silencing, which are involved in multiple developmental processes in many organisms. Apart from miRNAs, mouse germ cells express another type of small RNA, piwi-interacting RNAs (piRNAs). Although it has been clear that piRNAs play a role in repression of retrotransposons during spermatogenesis, the function of miRNA in mouse germ cells has been unclear. Methodology/Principal Findings In this study, we first revealed the expression pattern of miRNAs by using a real-time PCR-based 220-plex miRNA expression profiling method. During development of germ cells, miR-17-92 cluster, which is thought to promote cell cycling, and the ES cell-specific cluster encoding miR-290 to -295 (miR-290-295 cluster) were highly expressed in primordial germ cells (PGCs) and spermatogonia. A set of miRNAs was developmentally regulated. We next analysed function of miRNA biogenesis in germ cell development by using conditional Dicer-knockout mice in which Dicer gene was deleted specifically in the germ cells. Dicer-deleted PGCs and spermatogonia exhibited poor proliferation. Retrotransposon activity was unexpectedly suppressed in Dicer-deleted PGCs, but not affected in the spermatogonia. In Dicer-deleted testis, spermatogenesis was retarded at an early stage when proliferation and/or early differentiation. Additionally, we analysed spermatogenesis in conditional Argonaute2-deficient mice. In contrast to Dicer-deficient testis, spermatogenesis in Argonaute2-deficient testis was indistinguishable from that in wild type. Conclusion/Significance These results illustrate that miRNAs are important for the proliferation of PGCs and spermatogonia, but dispensable for the repression of retrotransposons in developing germ cells. Consistently, miRNAs promoting cell cycling are highly expressed in PGCs and spermatogonia. Furthermore, based on normal spermatogenesis in Argonaute2-deficient testis, the critical function of Dicer in spermatogenesis is independent of Argonaute2.


Nature | 2014

The DNA methylation landscape of human early embryos

Hongshan Guo; Ping Zhu; Liying Yan; Rong Li; Boqiang Hu; Ying Lian; Jie Yan; Xiulian Ren; Shengli Lin; Junsheng Li; Xiaohu Jin; Xiaodan Shi; Ping Liu; Xiaoye Wang; Wei Wang; Yuan Wei; Xianlong Li; Fan Guo; Xinglong Wu; Xiaoying Fan; Jun Yong; Lu Wen; Sunney X. Xie; Fuchou Tang; Jie Qiao

DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.


Nucleic Acids Research | 2006

MicroRNA expression profiling of single whole embryonic stem cells

Fuchou Tang; Petra Hajkova; Sheila C. Barton; Kaiqin Lao; M. Azim Surani

MicroRNAs (miRNAs) are a class of 17–25 nt non-coding RNAs that have been shown to have critical functions in a wide variety of biological processes during development. Recently developed miRNA microarray techniques have helped to accelerate research on miRNAs. However, in some instances there is only a limited amount of material available for analysis, which requires more sensitive techniques that can preferably work on single cells. Here we demonstrate that it is possible to analyse miRNA in single cells by using a real-time PCR-based 220-plex miRNA expression profiling method. Development of this technique will greatly facilitate miRNA-related research on cells, such as the founder population of primordial germ cells where rapid and dynamic changes occur in a few cells, and for analysing heterogeneous population of cells. In these and similar cases, our method of single cell analysis is critical for elucidating the diverse roles of miRNAs.


Nature | 2009

Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells

Siqin Bao; Fuchou Tang; Xihe Li; Katsuhiko Hayashi; Astrid Gillich; Kaiqin Lao; M. Azim Surani

The pluripotent state, which is first established in the primitive ectoderm cells of blastocysts, is lost progressively and irreversibly during subsequent development. For example, development of post-implantation epiblast cells from primitive ectoderm involves significant transcriptional and epigenetic changes, including DNA methylation and X chromosome inactivation, which create a robust epigenetic barrier and prevent their reversion to a primitive-ectoderm-like state. Epiblast cells are refractory to leukaemia inhibitory factor (LIF)–STAT3 signalling, but they respond to activin/basic fibroblast growth factor to form self-renewing epiblast stem cells (EpiSCs), which exhibit essential properties of epiblast cells and that differ from embryonic stem (ES) cells derived from primitive ectoderm. Here we show reprogramming of advanced epiblast cells from embryonic day 5.5–7.5 mouse embryos with uniform expression of N-cadherin and inactive X chromosome to ES-cell-like cells (rESCs) in response to LIF–STAT3 signalling. Cultured epiblast cells overcome the epigenetic barrier progressively as they proceed with the erasure of key properties of epiblast cells, resulting in DNA demethylation, X reactivation and expression of E-cadherin. The accompanying changes in the transcriptome result in a loss of phenotypic and epigenetic memory of epiblast cells. Using this approach, we report reversion of established EpiSCs to rESCs. Moreover, unlike epiblast and EpiSCs, rESCs contribute to somatic tissues and germ cells in chimaeras. Further studies may reveal how signalling-induced epigenetic reprogramming may promote reacquisition of pluripotency.


Cell | 2014

Programming and Inheritance of Parental DNA Methylomes in Mammals

Lu Wang; Jun Zhang; Jialei Duan; Xinxing Gao; Wei Zhu; Xingyu Lu; Lu Yang; Jing Zhang; Guoqiang Li; Weimin Ci; Wei Li; Qi Zhou; Neel Aluru; Fuchou Tang; Chuan He; Xingxu Huang; Jiang Liu

The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.


Nature Methods | 2011

Development and applications of single-cell transcriptome analysis

Fuchou Tang; Kaiqin Lao; M. Azim Surani

Dissecting the relationship between genotype and phenotype is one of the central goals in developmental biology and medicine. Transcriptome analysis is a powerful strategy to connect genotype to phenotype of a cell. Here we review the history, progress, potential applications and future developments of single-cell transcriptome analysis. In combination with live cell imaging and lineage tracing, it will be possible to decipher the full gene expression network underlying physiological functions of individual cells in embryos and adults, and to study diseases.

Collaboration


Dive into the Fuchou Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Azim Surani

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge