Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fude Cui is active.

Publication


Featured researches published by Fude Cui.


International Journal of Pharmaceutics | 2002

Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo

Yan Pan; Ying Jian Li; Hui Ying Zhao; Jun Min Zheng; Hui Xu; Gang Wei; Jin Song Hao; Fude Cui

There are many ongoing investigations to improve the oral bioavailability of peptide and protein formulations. Bioadhesive polysaccharide chitosan nanoparticles (CS-NPs) would seem to further enhance intestinal absorption of them. In this study, Insulin-loaded CS-NPs were prepared by ionotropic gelation of CS with tripolyphosphate anions. Its particle size distribution and zeta potential were determined by photon correction spectroscopy and laser Dopper anemometry. The ability of CS-NPs to enhance intestinal absorption of insulin and increase the relative pharmacological bioavailability of insulin was investigated by monitoring the plasma glucose level of alloxan-induced diabetic rats after oral administration of various doses of insulin-loaded CS-NPs. CS-NPs had a particle size in the range of 250-400 nm and its polydispersity index was smaller than 0.1, positively charged, stable. Insulin association was found up to 80% and its in vitro release showed a great initial burst with a pH-sensitivity property. CS-NPs enhanced the intestinal absorption of insulin to a greater extent than the aqueous solution of CS in vivo. Above all, after administration of 21 I.U./kg insulin in the CS-NPs, the hypoglycemia was prolonged over 15 h and the average pharmacological bioavailability relative to SC injection of insulin solution was up to 14.9%.


Journal of Controlled Release | 2009

Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation

Yong-Mei Yin; Fude Cui; Chaofeng Mu; Min-Koo Choi; Jung Sun Kim; Suk-Jae Chung; Chang-Koo Shim; Dae-Duk Kim

A microemulsion system of docetaxel was prepared and evaluated for its solubilization capacity and oral bioavailability improvement. Based on a solubility study and pseudo ternary phase diagrams, microemulsions of about 30 nm in mean diameter were formulated with improved solubilization capacity towards the hydrophobic drug, docetaxel. The o/w microemulsion formulation (M-3) composed of Capryol 90 (oil), Cremophor EL (surfactant) and Transcutol (co-surfactant) enhanced the solubility of docetaxel up to 30 mg/mL, which maintained solubilization capacity for 24 h even after it was diluted 20 times with normal saline. The three formulations did not show significant difference in the in vitro lipid digestion study. Both the ultrafiltration and dialysis studies revealed that the release of 80% of docetaxel was released from the microemulsions within 12 h in vitro. Compared to the commercial product Taxotere (0.025 microg/cm(2)), the apical to basolateral transport of docetaxel across the Caco-2 cell monolayer from the M-3 formulation (Capryol 90/Cremophor EL/Transcutol=29.4:24.9:12.4, w/w) was significantly improved (0.624 microg/cm(2), p < 0.01). Moreover, the oral bioavailability of the M-3 formulation in rats (34.42%) rose dramatically compared to that of the orally administered Taxotere (6.63%). This increase in bioavailability was probably due to the combined effect of the enhancement in solubility, the inhibition of P-gp efflux system and the increase in permeability. These results encourage further development of docetaxel microemulsions as an oral drug delivery system.


European Journal of Pharmaceutical Sciences | 2010

Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability

Dengning Xia; Peng Quan; Hongze Piao; Hongyu Piao; Shaoping Sun; Yongmei Yin; Fude Cui

The aim of this study was to prepare and characterize nitrendipine nanosuspensions to enhance the dissolution rate and oral bioavailability of this drug. Nanosuspensions were prepared by the precipitation-ultrasonication method. The effects of five important process parameters, i.e. the concentration of PVA in the anti-solvent, the concentration of nitrendipine in the organic phase, the precipitation temperature, the power input and the time length of ultrasonication on the particle size of nanosuspensions were investigated systematically, and the optimal values were 0.15%, 30 mg/ml, below 3 degrees C, 400 W and 15 min, respectively. The particle size and zeta potential of nanocrystals were 209 nm (+/- 9 nm) and -13.9 mV (+/-1.9 mV), respectively. The morphology of nanocrystals was found to be flaky in shape by scanning electron microscopy (SEM) observation. The X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) analysis indicated that there was no substantial crystalline change in the nanocrystals compared with raw crystals. The in vitro dissolution rate of nitrendipine was significantly increased by reducing the particle size. The in vivo test demonstrated that the C(max) and AUC(0-->12) values of nanosuspension in rats were approximately 6.1-fold and 5.0-fold greater than that of commercial tablets, respectively.


Biomaterials | 2010

The effects of mixed MPEG-PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel

Chao-Feng Mu; Prabagar Balakrishnan; Fude Cui; Yong-Mei Yin; Yong-Bok Lee; Han-Gon Choi; Chul Soon Yong; Suk-Jae Chung; Chang-Koo Shim; Dae-Duk Kim

A mixed micelle that comprised of MPEG-PLA (MPP) and Pluronic copolymers was developed for enhanced bioavailability and to overcome multidrug resistance of docetaxel in cancer therapy. The mixed micelles that sufficiently solubilized docetaxel were evaluated for the effect of Pluronic copolymers weight ratio on the mixed micelles with respect to drug loading and drug release. In vitro, cell viability and cytotoxicity studies in KB and KBv cells revealed that the mixed micellar formulations were more potent than the commercial docetaxel formulation (Taxotere). In vivo pharmacokinetics study in rats showed that the mixed micelles significantly enhanced the bioavailability of docetaxel (3.6 fold) than Taxotere. Moreover, antitumor activity assessed in KBv cancer xenograft BALB/C nude mice models showed that the mixed micelles significantly reduced the tumor size than the control (Taxotere). Clear differences in the intracellular uptake of docetaxel between MPP and mixed micelles were observed using confocal laser scanning microscopy. This study presents not only a new micelle structure for a diblock-triblock copolymer system, but also a method for enhanced bioavailability of docetaxel and to overcome some of the limitations on its multidrug resistance in cancer therapy.


International Journal of Pharmaceutics | 2009

Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor

Rui Yang; Won-Sik Shim; Fude Cui; Gang Cheng; Xu Han; Qing-Ri Jin; Dae-Duk Kim; Suk-Jae Chung; Chang-Koo Shim

In our previous study, lung tumor-specific targeting of paclitaxel was achieved in mice by intravenous administration of chitosan-modified paclitaxel-loaded PLGA nanoparticles (C-NPs-paclitaxel). Transient formation of aggregates in the blood stream followed by enhanced trapping in the capillaries was proposed as a mechanism of the lung-specific accumulation of paclitaxel. In the present study, the mechanism of tumor lung preferential accumulation of paclitaxel from C-NPs-paclitaxel was investigated. Zeta potential and in vitro cellular cytotoxicity (A549 cells and CT-26 cells) of C-NPs-paclitaxel, and in vitro uptake of coumarin 6 to these cells from chitosan-modified coumarin 6 containing PLGA nanoparticles (C-NPs-coumarin 6) were examined as a function of pH (6.8, 7.4 and 8.0). The zeta potential of C-NPs-paclitaxel increased as the medium pH became more acidic. In vitro uptake of coumarin 6 by A549 cells and CT-26 cells was enhanced at lower pH for C-NPs-coumarin 6. In vitro cytotoxicity experiment with C-NPs-paclitaxel demonstrated enhanced cytotoxicity as the pH became more acidic. Therefore, enhanced electrostatic interaction between chitosan-modified PLGA nanoparticles and acidic microenvironment of tumor cells appears to be an underlying mechanism of lung tumor-specific accumulation of paclitaxel from C-NPs-paclitaxel.


Journal of Pharmaceutical Sciences | 2009

Lung‐specific delivery of paclitaxel by chitosan‐modified PLGA nanoparticles via transient formation of microaggregates

Rui Yang; Su‐Geun Yang; Won-Sik Shim; Fude Cui; Gang Cheng; In-Wha Kim; Dae-Duk Kim; Suk-Jae Chung; Chang-Koo Shim

Chitosan-modified paclitaxel-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles with a mean diameter of 200-300 nm in distilled water were prepared by a solvent evaporation method. The mean diameter increased dramatically in contact with the mouse (CDF(1)) plasma, as a function of chitosan concentration in the modification solution (e.g., 2670.5 nm for 0.7% chitosan-modified nanoparticles, NP(3)), but reverted to almost its original size (i.e., 350.7 nm for NP(3)) following 5 min of gentle agitation. The zeta potential of PLGA nanoparticles was changed to positive by the chitosan modification. The in vitro uptake into, and cytotoxicity of the nanoparticles against, a lung cancer cell line (A549) were significantly increased by the modification. Most importantly, a lung-specific increase in the distribution index of paclitaxel (i.e., AUC(lung)/AUC(plasma)) was observed for chitosan-modified nanoparticles (e.g., 99.9 for NP(3) vs. 5.4 for Taxol) when nanoparticles were administered to lung-metastasized mice via the tail vein at a paclitaxel dose of 10 mg/kg. Transient formation of aggregates in the blood stream followed by enhanced trapping in the lung capillaries, and electrical interaction-mediated enhanced uptake across the endothelial cells of the lung tumor capillary appear to be responsible for the lung-tumor-specific distribution of the chitosan modified nanoparticles.


Pharmaceutical Research | 2007

Antitumor Effect of Paclitaxel-Loaded PEGylated Immunoliposomes Against Human Breast Cancer Cells

Tao Yang; Min-Koo Choi; Fude Cui; Seung Jin Lee; Suk-Jae Chung; Chang-Koo Shim; Dae-Duk Kim

PurposeThe antitumor effect of paclitaxel-loaded PEGylated immunoliposome (PILs) was investigated in breast cancer cell lines and the xenograft model.MethodsHerceptin was conjugated to paclitaxel-loaded PEGylated liposomes (PLs). In vitro cellular uptake and cytotoxicity of PILs were determined in breast cancer cell lines while in vivo antitumor efficacy was evaluated in the xenograft nude mouse model.ResultsThe PILs formulation was able to significantly increase the HER2 mediated cellular uptake of paclitaxel compared to the PLs in cell lines overexpressing HER2 (BT-474 and SK-BR-3 cells). However, in the MDA-MB-231 cells, which express low levels of HER2, the difference between the PILs and PLs formulation was not significant. The biological activity of Herceptin was maintained throughout the conjugation process as exhibited by the antitumor dose–response curves determined for Herceptin itself, for the thiolated Herceptin alone and subsequently for the immunoliposome-coupled Herceptin. In BT-474 and SK-BR-3 cells, the cytotoxicity of the PILs was more potent than that of Taxol. Moreover, in in vivo studies, PILs showed significantly higher tumor tissue distribution of paclitaxel in the BT-474 xenograft model and more superior antitumor efficacy compared to Taxol and PLs. However, in the MDA-MB-231 xenograft model, PILs and PLs showed similar tumor tissue distribution as well as antitumor activity.ConclusionsThese results suggest that HER2-mediated endocytosis is involved in the PILs formulation. The ability of the PILs formulation to efficiently and specifically deliver paclitaxel to the HER2-overexpressing cancer cells implies that it is a promising strategy for tumor-specific therapy for HER2-overexpressing breast cancers.


Journal of Controlled Release | 2003

Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method

Fude Cui; Mingshi Yang; Yanyan Jiang; Dongmei Cun; Wenhui Lin; Fan Yl; Yoshiaki Kawashima

To improve the bioavailability of nitrendipine microspheres, a sustained-release microspheres having solid dispersion structure were prepared in one step. Two types of polymer, i.e. solid dispersing and sustained-release polymers, were employed to prepare the microspheres by the spherical crystallization technique, i.e. quasi-emulsion solvent diffusion method. The factors of effect on micromeritic properties and release profiles of the resultant microspheres were investigated. And the bioavailability of nitrendipine microspheres was evaluated in six healthy dogs. The results showed that the particle size of microspheres was determined mainly by the agitation speed. The dissolution rate of nitrendipine from microspheres was enhanced significantly with increasing the amount of dispersing agents, and sustained by adding retarding agents. The release rate of microspheres could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents. The results of X-ray diffraction and differential scanning calorimetry analysis indicated that the crystalline form of nitrendipine was disordered, suggesting that nitrendipine was highly dispersed in microspheres, so as amorphous state. The release profiles and content of the microspheres stored at a temperature of 40 degrees C and a relative humidity of 75% were unchanged during 3 months of accelerating condition of storage. And the relative bioavailability of the sustained-release microspheres compared with the Baypress tablets and the conventional tablets was 107.78% and 309.82%. In conclusion, the sustained-release microspheres with solid dispersion structure improved the bioavailability of the water insoluble drug and prolonged the Tmax value.


International Journal of Pharmaceutics | 2008

Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): Preparation and evaluation in vitro

Feng Wan; Jian You; Yu Sun; Xing-Guo Zhang; Fude Cui; Yong-Zhong Du; Hong Yuan; Fuqiang Hu

In this study, the conjugate of PEG2000-stearic acid (PEG2000-SA) was used to prepare PEGylated solid lipid nanoparticles loading vinorelbine bitartrate (VB-pSLNs) by cold homogenization technique. The particle size and zeta potential of resulted VB-pSLNs ranged 180-250nm and 0-10mV, which were determined using a Zetasizer, respectively. Although the drug entrapment efficiency (EE) slightly decreased after the PEG modification of VB-SLNs, above 60 % EE could be reached. The drug release tests in vitro indicated the faster drug release from VB-pSLNs than that from VB-SLNs without PEG modification. To investigate the cellular uptake of VB-pSLNs, the chemical conjugate of octadecylamine-fluorescein isothiocynate (FITC-ODA) was synthesized, and was used as a fluorescence marker to incorporate into nanoparticles. The results from cellular uptake indicated that the phagocytosis of VB-pSLNs by RAW264.7 cells was inhibited effectively by the PEG modification of SLNs, while the uptake by cancer cells (MCF-7 and A549) could be improved significantly. The assay of anticancer activity in vitro demonstrated that the anticancer activity of VB was significantly enhanced by the encapsulation of SLNs and pSLNs due to the increased cellular internalization of drug. The results suggested that SLNs and pSLNs could be excellent carrier candidates to entrap VB for tumor chemotherapeutics.


International Journal of Pharmaceutics | 2012

α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: Preparation, characterization and in vitro/in vivo evaluations

Na Liang; Shaoping Sun; Xuefeng Li; Hongze Piao; Hongyu Piao; Fude Cui; Liang Fang

α-Tocopherol succinate hydrophobically modified chitosan (CS-TOS) containing 17 α-tocopherol groups per 100 anhydroglucose units was synthesized by coupling reaction. The formation of CS-TOS was confirmed by (1)H NMR and FT-IR analysis. In aqueous medium, the polymer could self-aggregate to form micelles, and the critical micelle concentration (CMC) was determined to be 5.8 × 10(-3) mg/ml. Transmission electron microscopy (TEM) observation revealed that both bare and paclitaxel-loaded micelles were near spherical in shape. The mean particle size and zeta potential of drug-loaded micelles were about 78 nm and +25.7 mV, respectively. The results of DSC and XRD analysis indicated that paclitaxel was entrapped in the micelles in molecular or amorphous state. In vitro cytotoxicity and hemolysis study revealed the effectiveness and safety of this delivery system, which was further confirmed by the in vivo antitumor evaluations. It can be concluded that the CS-TOS was a potential micellar carrier for paclitaxel.

Collaboration


Dive into the Fude Cui's collaboration.

Top Co-Authors

Avatar

Kai Shi

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yoshiaki Kawashima

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Mingshi Yang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Dengning Xia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongyu Piao

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Dongmei Cun

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Hongze Piao

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Na Liang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Shaoping Sun

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Chang-Koo Shim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge