Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fugui Zhang is active.

Publication


Featured researches published by Fugui Zhang.


Genes and Diseases | 2016

Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance

Maryam K. Mohammed; Connie Shao; Jing Wang; Qiang Wei; Xin Wang; Zachary J. Collier; Shengli Tang; Hao Liu; Fugui Zhang; Jiayi Huang; Dan Guo; Minpeng Lu; Feng Liu; Jianxiang Liu; Chao Ma; Lewis L. Shi; Aravind Athiviraham; Tong-Chuan He; Michael J. Lee

Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.


Laboratory Investigation | 2016

The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies

Ke Yang; Xin Wang; Hongmei Zhang; Zhongliang Wang; Guoxin Nan; Yasha Li; Fugui Zhang; Maryam K. Mohammed; Rex C. Haydon; Hue H. Luu; Yang Bi; Tong-Chuan He

The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying the development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin-mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the ‘destruction complex’, consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of cross-talk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway.


Cellular Physiology and Biochemistry | 2015

The Calcium-Binding Protein S100A6 Accelerates Human Osteosarcoma Growth by Promoting Cell Proliferation and Inhibiting Osteogenic Differentiation

Yasha Li; Eric R. Wagner; Zhengjian Yan; Zhonliang Wang; Gaurav Luther; Wei Jiang; Jixing Ye; Qiang Wei; Jing Wang; Lianggong Zhao; Shun Lu; Xin Wang; Maryam K. Mohammed; Shengli Tang; Hao Liu; Jiaming Fan; Fugui Zhang; Yulong Zou; Dongzhe Song; Junyi Liao; Rex C. Haydon; Hue H. Luu; Tong-Chuan He

Background/Aims: Although osteosarcoma (OS) is the most common primary malignancy of bone, its molecular pathogenesis remains to be fully understood. We previously found the calcium-binding protein S100A6 was expressed in ∼80% of the analyzed OS primary and/or metastatic tumor samples. Here, we investigate the role of S100A6 in OS growth and progression. Methods: S100A6 expression was assessed by qPCR and Western blotting. Overexpression or knockdown of S100A6 was carried out to determine S100A6s effect on proliferation, cell cycle, apoptosis, tumor growth, and osteogenic differentiation. Results: S100A6 expression was readily detected in human OS cell lines. Exogenous S100A6 expression promoted cell proliferation in vitro and tumor growth in an orthotopic xenograft model of human OS. S100A6 overexpression reduced the numbers of OS cells in G1 phase and increased viable cells under serum starvation condition. Conversely, silencing S100A6 expression induced the production of cleaved caspase 3, and increased early stage apoptosis. S100A6 knockdown increased osteogenic differentiation activity of mesenchymal stem cells, while S100A6 overexpression inhibited osteogenic differentiation. BMP9-induced bone formation was augmented by S100A6 knockdown. Conclusion: Our findings strongly suggest that S100A6 may promote OS cell proliferation and OS tumor growth at least in part by facilitating cell cycle progression, preventing apoptosis, and inhibiting osteogenic differentiation. Thus, it is conceivable that targeting S100A6 may be exploited as a novel anti-OS therapy.


Scientific Reports | 2015

Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells.

Youlin Deng; Junhui Zhang; Zhongliang Wang; Zhengjian Yan; Min Qiao; Jixing Ye; Qiang Wei; Jing Wang; Xin Wang; Lianggong Zhao; Shun Lu; Shengli Tang; Maryam K. Mohammed; Hao Liu; Jiaming Fan; Fugui Zhang; Yulong Zou; Junyi Liao; Hongbo Qi; Rex C. Haydon; Hue H. Luu; Tong-Chuan He; Liangdan Tang

Ovarian cancer is the most lethal gynecologic malignancy with an overall cure rate of merely 30%. Most patients experience recurrence within 12–24 months of cure and die of progressively chemotherapy-resistant disease. Thus, more effective anti-ovarian cancer therapies are needed. Here, we investigate the possibility of repurposing antibiotic monensin as an anti-ovarian cancer agent. We demonstrate that monensin effectively inhibits cell proliferation, migration and cell cycle progression, and induces apoptosis of human ovarian cancer cells. Monensin suppresses multiple cancer-related pathways including Elk1/SRF, AP1, NFκB and STAT, and reduces EGFR expression in ovarian cancer cells. Monensin acts synergistically with EGFR inhibitors and oxaliplatin to inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Xenograft studies confirm that monensin effectively inhibits tumor growth by suppressing cell proliferation through targeting EGFR signaling. Our results suggest monensin may be repurposed as an anti-ovarian cancer agent although further preclinical and clinical studies are needed.


Biomedical Materials | 2016

A thermoresponsive polydiolcitrate-gelatin scaffold and delivery system mediates effective bone formation from BMP9-transduced mesenchymal stem cells

Jixing Ye; Jing Wang; Yunxiao Zhu; Qiang Wei; Xin Wang; Jian Yang; Shengli Tang; Hao Liu; Jiaming Fan; Fugui Zhang; Evan M. Farina; Maryam K. Mohammed; Yulong Zou; Dongzhe Song; Junyi Liao; Jiayi Huang; Dan Guo; Minpeng Lu; Feng Liu; Jianxiang Liu; Li Li; Chao Ma; Xue Hu; Rex C. Haydon; Michael J. Lee; Russell R. Reid; Guillermo A. Ameer; Li Yang; Tong-Chuan He

Successful bone tissue engineering requires at the minimum sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we investigated the potential use of a biodegradable citrate-based thermosensitive macromolecule, poly(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin (PPCNG) as a scaffold for the delivery of BMP9-stimulated MSCs to promote localized bone formation. The addition of gelatin to PPCN effectively enhanced the cell adhesion and survival properties of MSCs entrapped within the gel in 3D culture. Using the BMP9-transduced MSC line immortalized mouse embryonic fibroblasts (iMEFs), we found that PPCNG facilitated BMP9-induced osteogenic differentiation of iMEFs in vivo and promoted the formation of well-ossified and vascularized trabecular bone-like structures in a mouse model of ectopic bone formation. Histologic evaluation revealed that vascularization of the bony masses retrieved from the iMEFs  +  PPCNG group was significantly more pronounced than that of the direct cell injection group. Accordingly, vascular endothelial growth factor (VEGF) expression was shown to be significantly higher in the bony masses recovered from the iMEFs  +  PPCNG group. Taken together, our results suggest that PPCNG may serve as a novel biodegradable and injectable scaffold and carrier for gene and cell-based bone tissue engineering.


Cellular Physiology and Biochemistry | 2016

A Blockade of IGF Signaling Sensitizes Human Ovarian Cancer Cells to the Anthelmintic Niclosamide-Induced Anti- Proliferative and Anticancer Activities

Youlin Deng; Zhongliang Wang; Fugui Zhang; Min Qiao; Zhengjian Yan; Qiang Wei; Jing Wang; Hao Liu; Jiaming Fan; Yulong Zou; Junyi Liao; Xue Hu; Liqun Chen; Xinyi Yu; Rex C. Haydon; Hue H. Luu; Hongbo Qi; Tong-Chuan He; Junhui Zhang

Background/Aims: Ovarian cancer is the most lethal gynecologic malignancy, and there is an unmet clinical need to develop new therapies. Although showing promising anticancer activity, Niclosamide may not be used as a monotherapy. We seek to investigate whether inhibiting IGF signaling potentiates Niclosamides anticancer efficacy in human ovarian cancer cells. Methods: Cell proliferation and migration are assessed. Cell cycle progression and apoptosis are analyzed by flow cytometry. Inhibition of IGF signaling is accomplished by adenovirus-mediated expression of siRNAs targeting IGF-1R. Cancer-associated pathways are assessed using pathway-specific reporters. Subcutaneous xenograft model is used to determine anticancer activity. Results: We find that Niclosamide is highly effective on inhibiting cell proliferation, cell migration, and cell cycle progression, and inducing apoptosis in human ovarian cancer cells, possibly by targeting multiple signaling pathways involved in ELK1/SRF, AP-1, MYC/MAX and NFkB. Silencing IGF-1R exert a similar but weaker effect than that of Niclosamides. However, silencing IGF-1R significantly sensitizes ovarian cancer cells to Niclosamide-induced anti-proliferative and anticancer activities both in vitro and in vivo. Conclusion: Niclosamide as a repurposed anticancer agent may be more efficacious when combined with agents that target other signaling pathways such as IGF signaling in the treatment of human cancers including ovarian cancer.


Cellular Physiology and Biochemistry | 2017

NEL-Like Molecule-1 (Nell1) Is Regulated by Bone Morphogenetic Protein 9 (BMP9) and Potentiates BMP9-Induced Osteogenic Differentiation at the Expense of Adipogenesis in Mesenchymal Stem Cells

Jing Wang; Junyi Liao; Fugui Zhang; Dongzhe Song; Minpeng Lu; Jianxiang Liu; Qiang Wei; Shengli Tang; Hao Liu; Jiaming Fan; Yulong Zou; Dan Guo; Jiayi Huang; Feng Liu; Chao Ma; Xue Hu; Li Li; Xiangyang Qu; Liqun Chen; Yaguang Weng; Michael J. Lee; Tong-Chuan He; Russell R. Reid; Jiye Zhang

Background: BMP9 induces both osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs). Nell1 is a secretory glycoprotein with osteoinductive and anti-adipogenic activities. We investigated the role of Nell1 in BMP9-induced osteogenesis and adipogenesis in MSCs. Methods: Previously characterized MSCs iMEFs were used. Overexpression of BMP9 and NELL1 or silencing of mouse Nell1 was mediated by adenoviral vectors. Early and late osteogenic and adipogenic markers were assessed by staining techniques and qPCR analysis. In vivo activity was assessed in an ectopic bone formation model of athymic mice. Results: We demonstrate that Nell1 expression was up-regulated by BMP9. Exogenous Nell1 potentiated BMP9-induced late stage osteogenic differentiation while inhibiting the early osteogenic marker. Forced Nell1 expression enhanced BMP9-induced osteogenic regulators/markers and inhibited BMP9-upregulated expression of adipogenic regulators/markers in MSCs. In vivo ectopic bone formation assay showed that exogenous Nell1 expression enhanced mineralization and maturity of BMP9-induced bone formation, while inhibiting BMP9-induced adipogenesis. Conversely, silencing Nell1 expression in BMP9-stimulated MSCs led to forming immature chondroid-like matrix. Conclusion: Our findings indicate that Nell1 can be up-regulated by BMP9, which in turn accelerates and augments BMP9-induced osteogenesis. Exogenous Nell1 may be exploited to enhance BMP9-induced bone formation while overcoming BMP9-induced adipogenesis in regenerative medicine.


Oncotarget | 2017

Anthelmintic mebendazole enhances cisplatin’s effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC)

Fugui Zhang; Yong Li; Hongmei Zhang; Enyi Huang; Lina Gao; Wenping Luo; Qiang Wei; Jiaming Fan; Dongzhe Song; Junyi Liao; Yulong Zou; Feng Liu; Jianxiang Liu; Jiayi Huang; Dan Guo; Chao Ma; Xue Hu; Li Li; Xiangyang Qu; Liqun Chen; Xinyi Yu; Zhicai Zhang; Tingting Wu; Hue H. Luu; Rex C. Haydon; Jinlin Song; Tong-Chuan He; Ping Ji

Head and neck squamous cell carcinoma (HNSCC) is one of the most common and aggressive types of human cancers worldwide. Nearly a half of HNSCC patients experience recurrence within five years of treatment and develop resistance to chemotherapy. Thus, there is an urgent clinical need to develop safe and novel anticancer therapies for HNSCC. Here, we investigate the possibility of repurposing the anthelmintic drug mebendazole (MBZ) as an anti-HNSCC agent. Using the two commonly-used human HNSCC lines CAL27 and SCC15, we demonstrate MBZ exerts more potent anti-proliferation activity than cisplatin in human HNSCC cells. MBZ effectively inhibits cell proliferation, cell cycle progression and cell migration, and induces apoptosis of HNSCC cells. Mechanistically, MBZ can modulate the cancer-associated pathways including ELK1/SRF, AP1, STAT1/2, MYC/MAX, although the regulatory outcomes are context-dependent. MBZ also synergizes with cisplatin in suppressing cell proliferation and inducing apoptosis of human HNSCC cells. Furthermore, MBZ is shown to promote the terminal differentiation of CAL27 cells and keratinization of CAL27-derived xenograft tumors. Our results are the first to demonstrate that MBZ may exert its anticancer activity by inhibiting proliferation while promoting differentiation of certain HNSCC cancer cells. Its conceivable the anthelmintic drug MBZ can be repurposed as a safe and effective agent used in combination with other frontline chemotherapy drugs such as cisplatin in HNSCC treatment.


International Journal of Medical Sciences | 2016

The Prodomain-Containing BMP9 Produced from a Stable Line Effectively Regulates the Differentiation of Mesenchymal Stem Cells

Ruifang Li; Zhengjian Yan; Jixing Ye; He Huang; Zhongliang Wang; Qiang Wei; Jing Wang; Lianggong Zhao; Shun Lu; Xin Wang; Shengli Tang; Jiaming Fan; Fugui Zhang; Yulong Zou; Dongzhe Song; Junyi Liao; Minpeng Lu; Feng Liu; Lewis L. Shi; Aravind Athiviraham; Michael J. Lee; Tong-Chuan He; Zhonglin Zhang

Background: BMPs play important roles in regulating stem cell proliferation and differentiation. Using adenovirus-mediated expression of the 14 types of BMPs we demonstrated that BMP9 is one of the most potent BMPs in inducing osteogenic differentiation of mesenchymal stem cells (MSCs), which was undetected in the early studies using recombinant BMP9 proteins. Endogenous BMPs are expressed as a precursor protein that contains an N-terminal signal peptide, a prodomain and a C-terminal mature peptide. Most commercially available recombinant BMP9 proteins are purified from the cells expressing the mature peptide. It is unclear how effectively these recombinant BMP9 proteins functionally recapitulate endogenous BMP9. Methods: A stable cell line expressing the full coding region of mouse BMP9 was established in HEK-293 cells by using the piggyBac transposon system. The biological activities and stability of the conditioned medium generated from the stable line were analyzed. Results: The stable HEK-293 line expresses a high level of mouse BMP9. BMP9 conditioned medium (BMP9-cm) was shown to effectively induce osteogenic differentiation of MSCs, to activate BMP-R specific Smad signaling, and to up-regulate downstream target genes in MSCs. The biological activity of BMP9-cm is at least comparable with that induced by AdBMP9 in vitro. Furthermore, BMP9-cm exhibits an excellent stability profile as its biological activity is not affected by long-term storage at -80ºC, repeated thawing cycles, and extended storage at 4ºC. Conclusions: We have established a producer line that stably expresses a high level of active BMP9 protein. Such producer line should be a valuable resource for generating biologically active BMP9 protein for studying BMP9 signaling mechanism and functions.


Journal of Cellular and Molecular Medicine | 2017

BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients

Dongzhe Song; Fugui Zhang; Russell R. Reid; Jixing Ye; Qiang Wei; Junyi Liao; Yulong Zou; Jiaming Fan; Chao Ma; Xue Hu; Xiangyang Qu; Liqun Chen; Li Li; Yichun Yu; Xinyi Yu; Zhicai Zhang; Chen Zhao; Zongyue Zeng; Ruyi Zhang; Shujuan Yan; Tingting Wu; Xingye Wu; Yi Shu; Jiayan Lei; Yasha Li; Wenwen Zhang; Jia Wang; Michael J. Lee; Jennifer Moriatis Wolf; Dingming Huang

The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long‐term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long‐term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering.

Collaboration


Dive into the Fugui Zhang's collaboration.

Top Co-Authors

Avatar

Qiang Wei

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Wang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Liu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Xin Wang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Xue Hu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge