Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fujun Wang is active.

Publication


Featured researches published by Fujun Wang.


Journal of Fluids Engineering-transactions of The Asme | 2013

Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes

Hui Sun; Ruofu Xiao; Weichao Liu; Fujun Wang

Growing environmental concerns and the need for better power balancing and frequency control have increased attention in renewable energy sources such as the reversible pump-turbine which can provide both power generation and energy storage. Pump-turbine operation along the S-shaped curve can lead to difficulties in loading the rejection process with unusual increases in water pressure, which lead to machine vibrations. Pressure fluctuations are the primary reason for unstable operation of pump-turbines. Misaligned guide vanes (MGVs) are widely used to control the stability in the S region. There have been experimental investigations and computational fluid dynamics (CFD) simulations of scale models with aligned guide vanes and MGVs with spectral analyses of the S curve characteristics and the pressure pulsations in the frequency and time-frequency domains at runaway conditions. The course of the S characteristic is related to the centrifugal force and the large incident angle at low flow conditions with large vortices forming between the guide vanes and the blade inlets and strong flow recirculation inside the vaneless space as the main factors that lead to the S-shaped characteristics. Preopening some of the guide vanes enables the pump-turbine to avoid the influence of the S characteristic. However, the increase of the flow during runaway destroys the flow symmetry in the runner leading to all asymmetry forces on the runner that leads to hydraulic system oscillations. The MGV technique also increases the pressure fluctuations in the draft tube and has a negative impact on stable operation of the unit.


Journal of Hydrodynamics | 2009

Experimental Investigation of Characteristic Frequency in Unsteady Hydraulic Behaviour of a Large Hydraulic Turbine

Fujun Wang; Xiao-qin Li; Jia-mei Ma; Min Yang; Yu-liang Zhu

The features of unsteady flow such as pressure variation and fluctuation in a large hydraulic turbine usually lead to the instability of operation. This article reports the recent in site investigation concerning the characteristic frequencies in pressure fluctuation, shaft torsional oscillation and structural vibration of a prototype 700 MW Francis turbine unit. The investigation was carried out for a wide load range of 200 MW-700 MW in the condition of water head 57 m-90 m. An extensive analysis of both time-history and frequency data of these unsteady hydraulic behaviours was conducted. It was observed that the pressure fluctuation in a draft tube is stronger than that in upstream flow passage. The low frequency with about one third of rotation frequency is dominative for the pressure fluctuation in part load range. Also the unsteady features of vibration of head cover and torsional oscillation of shaft exhibited the similar features. Numerical analysis showed that the vibration and oscillation are caused by vortex rope in the draft tube. In addition, a strong vibration with special characteristic frequency was observed for the head cover in middle load range. The pressure fluctuation in the draft tube with the same frequency was also recorded. Because this special vibration has appeared in the designed normal running condition, it should be avoided by carefully allocating power load in the future operation.


Journal of Hydrodynamics | 2007

Numerical Investigation of Performance of an Axial-Flow Pump with Inducer

Yao-jun Li; Fujun Wang

The interaction of flow through the inducer and impeller of an axial-flow pump equipped with an inducer has significant effect on its performance. This article presents a recent numerical investigation on this topic. The studied pump has an inducer with 3 blades mounted on a conical hub and a 6-blade impeller. The blade angle of the impeller is adjustable to generate different relative circumferential angles between the inducer blade trailing edge and the impeller blade leading edge. A computational fluid dynamics code was used to investigate the flow characteristics and performance of the axial-flow pump. For turbulence closure, the RNG k-ε model was applied with an unstructured grid system. The rotor-stator interaction was treated with a Multiple Reference Frame (MRF) strategy. Computations were performed in different cases: 7 different relative circumferential angles (Δθ) between the inducer blade trailing edge and the impeller blade leading edge, and 3 different axial gaps (G) between the inducer and the impeller. The variation of the hydraulic loss in the rotator was obtained by changing Δθ. The numerical results show that the pressure generated is minimum in the case of (G = 3% D), which indicates that the interference between inducer and impeller is strong if the axial gap is small. The pump performances were predicted and compared to the experimental measurements. Recommendations for future modifications and improvements to the pump design were also given.


Journal of Fluids Engineering-transactions of The Asme | 2011

Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump

Zhifeng Yao; Fujun Wang; Lixia Qu; Ruofu Xiao; Chenglian He; Min Wang

Pressure fluctuation is the primary reason for unstable operations of double-suction centrifugal pumps. By using flush mounted pressure transducers in the semispiral suction chamber and the volute casing of a double-suction pump, the pressure fluctuation signals were obtained and recorded at various operating conditions. Spectral analyses were performed on the pressure fluctuation signals in both frequency domain and time-frequency domain based on fast Fourier transform (FFT) and an adaptive optimal-kernel time-frequency representation (AOK TFR). The results show that pressure fluctuations at the impeller rotating frequency and some lower frequencies dominated in the semispiral suction chamber. Pressure fluctuations at the blade passing frequency, the impeller rotating frequency, and their harmonic frequencies were identified in the volute casing. The amplitude of pressure fluctuation at the blade passing frequency significantly increased when the flow rate deviated from the design flow rate. At 107% of the design flow rate, the amplitude increased more than 254% than that at the design flow rate. The time-frequency characteristics of these pressure fluctuations were affected greatly by both operating conditions and measurement locations. At partial flow rates the pulsation had a great irregularity and the amplitudes at the investigated frequencies were much larger than ones at the design flow rate. An asymmetrical pressure fluctuation structure in the volute casing was observed at all flow rates. The pulsation behavior at the blade passing frequency was the most prominent near the volute tongue zone, and the pressure waves propagated in both the radial and circumferential directions.


Chinese Journal of Mechanical Engineering | 2012

Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller

Zhengjun Yang; Fujun Wang; Peijian Zhou

The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.


Chinese Journal of Mechanical Engineering | 2015

Analysis of the pump-turbine S characteristics using the detached eddy simulation method

Hui Sun; Ruofu Xiao; Fujun Wang; Yexiang Xiao; Weichao Liu

Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.


Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | 2011

Numerical investigations of vortex flows and vortex suppression schemes in a large pumping-station sump

X L Tang; Fujun Wang; Y J Li; G H Cong; X Y Shi; Y L Wu; L Y Qi

This work uses a commercial computational fluid dynamics code to predict three-dimensional (3D) vortex flows in a large centrifugal-pump station under construction in China and proposes relevant vortex-eliminating schemes. Because of the complex nature of the vortex flows in sumps, different turbulence models, namely, standard k–ε, re-normalization group k–ε and realizable k–ε models, are first used to investigate their feasibility in predicting flows in a small physical model of an open pump sump, and various vortex streamlines and strength in the sump are predicted, analysed, and compared with the experimental data. The comparisons show that the realizable k–ε model predicts the position and strength of free-surface, sidewall-attached, and floor-attached vortices more accurately than the other two models. Then, the realizable k–ε model is used here to investigate 3D vortex flows in a large pumping-station sump. All the various vortices, such as free-surface, wall-attached vortices, are successfully predicted. Thus, based on the information of location, shape, size, and strength of the calculated vortices, three types of vortex-eliminating devices are proposed and their corresponding vortex suppression effects are analysed. These results will be used as reference for the safe and stable operation of the Hui–Nan–Zhuang pumping station in the future.


Journal of Hydrodynamics | 2011

A PARTIALLY-AVERAGED NAVIER-STOKES MODEL FOR HILL AND CURVED DUCT FLOW

Jia-mei Ma; Fujun Wang; Xin Yu; Zhu-qing Liu

Turbulent flows past hill and curved ducts exist in many engineering applications. Simulations of the turbulent flow are carried out based on a newly developed technique, the Partially-Averaged Navier-Stokes (PANS) model, including separation, recirculation, reattachment, turbulent vortex mechanism. The focus is on how to accurately predict typical separating, reattaching and secondary motion at a reasonable computational expense. The effect of the parameter, the unresolved-to-total ratio of kinetic energy (fk), is examined with a given unresolved-to-total ratio of dissipation (fε) for the hill flow with a much coarser grid system than required by the LES. An optimal value of (fk) can be obtained to predict the separation and reattachment locations and for more accurate simulation of the resolved turbulence. In addition, the turbulent secondary motions are captured by a smaller (fk) as compared with the RANS method with the same grid.


Chinese Journal of Mechanical Engineering | 2012

Numerical Simulation of Pressure Fluctuations in a Large Francis Turbine Runner

Fujun Wang; Cuilin Liao; Xuelin Tang

The pressure fluctuation caused by unsteady flow in runner is one of the main reasons of vibration for a large Francis hydraulic turbine. It directly affects the steady operation of the hydraulic turbine unit. The existing research of the pressure fluctuation in hydraulic turbine mainly focuses on the unsteady flow in draft tube. Accurate distribution of pressure fluctuations inside a runner is not very clear. In this paper, the numerical method for predicting the pressure fluctuations in runner is investigated and the numerical simulation is performed for a large Francis hydraulic turbine. It is proved that the combination of shear-stress transport(SST) k-ω turbulence model and pressure-implicit with splitting of operators(PISO) algorithm could give more reliable prediction of pressure fluctuations in runner. The frequencies of pressure fluctuations in runner are affected by the flow in guide vane and the flow in draft tube. The first dominant frequency is significantly determined by the flow in draft tube, especially at part load condition. This frequency is approximately equal to one-third of the runner rotating frequency. The evident second dominant frequency is exactly equal to the guide vane passing frequency. The peak-to-peak amplitudes of pressure fluctuations in runner at small guide vane open angle are larger than that at large open angle at the same operating head. The amplitudes at points on blade pressure surface are generally greater than that on suction surface. The research results could be used to direct the hydraulic design and operation stability improvement of a large Francis hydraulic turbine.


Engineering Applications of Computational Fluid Mechanics | 2016

Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller

Zhi-Feng Yao; Zheng-Jun Yang; Fujun Wang

ABSTRACT The turbulent flow in a centrifugal pump impeller is bounded by complex surfaces, including blades, a hub and a shroud. The primary challenge of the flow simulation arises from the generation of a boundary layer between the surface of the impeller and the moving fluid. The principal objective is to evaluate the near-wall solution approaches that are typically used to deal with the flow in the boundary layer for the large-eddy simulation (LES) of a centrifugal pump impeller. Three near-wall solution approaches –the wall-function approach, the wall-resolved approach and the hybrid Reynolds averaged Navier–Stoke (RANS) and LES approach – are tested. The simulation results are compared with experimental results conducted through particle imaging velocimetry (PIV) and laser Doppler velocimetry (LDV). It is found that the wall-function approach is more sparing of computational resources, while the other two approaches have the important advantage of providing highly accurate boundary layer flow prediction. The hybrid RANS/LES approach is suitable for predicting steady-flow features, such as time-averaged velocities and hydraulic losses. Despite the fact that the wall-resolved approach is expensive in terms of computing resources, it exhibits a strong ability to capture a small-scale vortex and predict instantaneous velocity in the near-wall region in the impeller. The wall-resolved approach is thus recommended for the transient simulation of flows in centrifugal pump impellers.

Collaboration


Dive into the Fujun Wang's collaboration.

Top Co-Authors

Avatar

Ruofu Xiao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhifeng Yao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ran Tao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuelin Tang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoqin Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lixia Qu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Peijian Zhou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Yang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Shi

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lars Davidson

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge