Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fujun Yu is active.

Publication


Featured researches published by Fujun Yu.


Journal of Biological Chemistry | 2015

Long Non-coding RNA Growth Arrest-specific Transcript 5 (GAS5) Inhibits Liver Fibrogenesis through a Mechanism of Competing Endogenous RNA

Fujun Yu; Jianjian Zheng; Yuqing Mao; Peihong Dong; Zhongqiu Lu; Guojun Li; Chuanyong Guo; Zhanju Liu; Xiaoming Fan

Background: Long non-coding RNAs function as competing endogenous RNAs (ceRNAs). Whether growth arrest-specific transcript 5 (GAS5) acts as a ceRNA for microRNA-222 in liver fibrosis remains undefined. Results: GAS5 increases p27 expression as a ceRNA for microRNA-222, thereby inhibiting liver fibrosis progression. Conclusion: The GAS5/microRNA-222/p27 axis underlies the pathogenesis of liver fibrosis. Significance: The ceRNA network helps to understand liver fibrogenesis. Effective control of hepatic stellate cell (HSC) activation and proliferation is critical to the treatment of liver fibrosis. Long non-coding RNAs have been shown to play a pivotal role in the regulation of cellular processes. It has been reported that growth arrest-specific transcript 5 (GAS5) acts as a crucial mediator in the control of cell proliferation and growth. However, little is known about the role and underlying mechanism of GAS5 in liver fibrosis. In this study, our results indicated that GAS5 expression was reduced in mouse, rat, and human fibrotic liver samples and in activated HSCs. Overexpression of GAS5 suppressed the activation of primary HSCs in vitro and alleviated the accumulation of collagen in fibrotic liver tissues in vivo. We identified GAS5 as a target of microRNA-222 (miR-222) and showed that miR-222 could inhibit the expression of GAS5. Interestingly, GAS5 could also repress miR-222 expression. A pulldown assay further validated that GAS5 could directly bind to miR-222. As a competing endogenous RNAs, GAS5 had no effect on primary miR-222 expression. In addition, GAS5 was mainly localized in the cytoplasm. Quantitative RT-PCR further demonstrated that the copy numbers of GAS5 per cell are higher than those of miR-222. GAS5 increased the level of p27 protein by functioning as a competing endogenous RNA for miR-222, thereby inhibiting the activation and proliferation of HSCs. Taken together, a new regulatory circuitry in liver fibrosis has been identified in which RNAs cross-talk by competing for shared microRNAs. Our findings may provide a new therapeutic strategy for liver fibrosis.


Cellular Physiology and Biochemistry | 2015

Ghrelin Attenuated Lipotoxicity via Autophagy Induction and Nuclear Factor-κB Inhibition.

Yuqing Mao; Jian Cheng; Fujun Yu; Huanqing Li; Chuanyong Guo; Xiaoming Fan

Background/Aims: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Autophagy is associated with NAFLD. Ghrelin is a gut hormone with various functions including energy metabolism and inflammation inhibition. We investigated the therapeutic effect of ghrelin on NAFLD and its association with autophagy. Methods: C57bl/6 mice were fed a high-fat diet for 8 weeks to induce a model of chronic NAFLD, with ghrelin (10 µg/kg) administrated subcutaneously twice weekly from weeks 6 to 8. LO2 cells were pretreated with ghrelin (10-8 M) before stimulation with free fatty acid (palmitic and oleic acids; 1 mM). Lipid droplets were identified by hematoxylin and eosin and Red O staining and quantified by triglyceride test kits. LC3I/II, an important biomarker protein of autophagy was detected by western blotting, real-time polymerase chain reaction, immunohistochemistry and immunofluorescence. Tumor necrosis factor (TNF)-a and interleukin (IL)-6 were detected by ELISA and immunohistochemistry. Nuclear factor (NF)-κB p65 was detected by western blotting and immunofluorescence. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were detected by western blotting. Results: Ghrelin reduced the triglyceride content in high fat diet (HFD) group in vivo and free fatty acid (FFA) group in vitro. TNF-a and IL-6 were significantly reduced in the ghrelin-treated mice compared with the control group. Autophagy induction was accompanied with intracellular lipid reduction in ghrelin-treated mice. Ghrelin upregulated autophagy via AMPK/mTOR restoration and inhibited translocation of NF-κB into the nucleus. Conclusions: The results indicate that ghrelin attenuates lipotoxicity by autophagy stimulation and NF-κB inhibition.


Hepatic Medicine : Evidence and Research | 2016

Autophagy: a new target for nonalcoholic fatty liver disease therapy

Yuqing Mao; Fujun Yu; Jianbo Wang; Chuanyong Guo; Xiaoming Fan

Nonalcoholic fatty liver disease (NAFLD) has gained importance in recent decades due to drastic changes in diet, especially in Western countries. NAFLD occurs as a spectrum from simple hepatic steatosis, steatohepatitis to cirrhosis, and even hepatocellular carcinoma. Although the molecular mechanisms underlying the development of NAFLD have been intensively investigated, many issues remain to be resolved. Autophagy is a cell survival mechanism for disposing of excess or defective organelles, and has become a hot spot for research. Recent studies have revealed that autophagy is linked to the development of NAFLD and regulation of autophagy has therapeutic potential. Autophagy reduces intracellular lipid droplets by enclosing them and fusing with lysosomes for degradation. Furthermore, autophagy is involved in attenuating inflammation and liver injury. However, autophagy is regarded as a double-edged sword, as it may also affect adipogenesis and adipocyte differentiation. Moreover, it is unclear as to whether autophagy protects the body from injury or causes diseases and even death, and the association between autophagy and NAFLD remains controversial. This review is intended to discuss, comment, and outline the progress made in this field and establish the possible molecular mechanism involved.


Cellular Physiology and Biochemistry | 2016

MicroRNA-125a-5p Contributes to Hepatic Stellate Cell Activation through Targeting FIH1

Guojun Li; Jing Li; Changshui Li; Honggang Qi; Peihong Dong; Jianjian Zheng; Fujun Yu

Background/Aims: Emerging evidence shows that microRNAs (miRNAs) play a crucial role in the regulation of activation, proliferation and apoptosis of hepatic stellate cells (HSCs). Previous studies have indicated that miR-125a-5p is correlated with hepatitis B virus replication and disease progression. However, little is known about the biological role and underlying mechanism of miR-125a-5p in liver fibrosis. Methods: We analyzed the level of miR-125a-5p in carbon tetrachloride-induced liver fibrosis and activated HSCs. We analyzed the effects of miR-125a-5p down-regulation on HSC activation and proliferation. We also analyzed the binding of miR-125a-5p to the 3′-untranslated region of factor inhibiting hypoxia-inducible factor 1 (FIH1) mRNA. Results: Up-regulation of miR-125a-5p was observed in the liver tissues of fibrotic mice and activated HSCs. Down-regulation of miR-125a-5p prevented the activation and proliferation of HSCs. FIH1, a negative modulator of hypoxia inducible factor 1, was confirmed to be a target of miR-125a-5p using the luciferase reporter assay. Further studies demonstrated that miR-125a-5p prompted the activation and proliferation of HSCs, at least in part, by down-regulating FIH1. Conclusion: Our findings shed new light on miRNAs as a promising therapeutic target in liver fibrosis.


International Journal of Molecular Sciences | 2015

Ghrelin Attenuates Liver Fibrosis through Regulation of TGF-β1 Expression and Autophagy

Yuqing Mao; Shaoren Zhang; Fujun Yu; Huanqing Li; Chuanyong Guo; Xiaoming Fan

Ghrelin is a stomach-derived growth hormone secretagogue that promotes various physiological effects, including energy metabolism and amelioration of inflammation. The purpose of this study was to investigate the protective mechanism of ghrelin against liver fibrosis. Liver fibrosis was induced in C57BL/6 mice by intraperitoneal injection of CCl4 (2.0 mL/kg of 10% CCl4 v/v solution in peanut oil) two times per week for eight weeks. Ghrelin (10 μg/kg) was intraperitoneally injected two times per week for eight weeks. A second murine liver fibrosis model was induced by bile duct ligation (BDL) and concurrent ghrelin administration for four weeks. Hematoxylin eosin (H&E), and Masson’s trichrome were used to detect pathological changes to liver tissue. Western blotting was used to detect protein levels of transforming growth factor (TGF)-β1, phosphorylated Smad3 (p-Smad3), I-collage, α-smooth muscle actin (α-SMA), matrix metalloproteinases (MMPs) 2, tissue inhibitor of matrix metalloproteinases (TIMPs) 1, phosphorylated NF-κB (p-NF-κB), and microtubule-associated protein light chain 3 (LC3). In addition, qRT-PCR was used to detect mRNA levels of TGF-β1, I-collage, α-SMA, MMP2, TIMP1 and LC3, while levels of TGF-β1, p-Smad3, I-collage, α-SMA, and LC3 were detected immunohistochemically. Levels of aspartate aminotransferase and alanine aminotransferase were significantly decreased by ghrelin treatment. Ghrelin administration also significantly reduced the extent of pathological changes in both murine liver fibrosis models. Expression levels of I-collage and α-SMA in both models were clearly reduced by ghrelin administration. Furthermore, ghrelin treatment decreased protein expression of TGF-β1 and p-Smad3. The protein levels of NF-κB and LC3 were increased in the CCl4- and BDL-treatment groups but were significantly reduced following ghrelin treatment. In addition, ghrelin inhibited extracellular matrix formation by decreasing NF-κB expression and maintaining the balance between MMP2 and TIMP1. Our results demonstrated that ghrelin attenuates liver fibrosis via inhibition of the TGF-β1/Smad3 and NF-κB signaling pathways, as well as autophagy suppression.


Cellular Physiology and Biochemistry | 2016

Activation of Hepatic Stellate Cells is Inhibited by microRNA-378a-3p via Wnt10a

Fujun Yu; XuFei Fan; Bicheng Chen; Peihong Dong; Jianjian Zheng

Background/Aims: Wnt/β-catenin pathway is involved in liver fibrosis and microRNAs (miRNAs) are considered as key regulators of the activation of hepatic stellate cells (HSCs). A recent study showed the protective role of miR-378a-3p against cardiac fibrosis. However, whether miR-378a-3p suppresses Wnt/β-catenin pathway in liver fibrosis is largely unknown. Methods: miR-378a-3p expression was detected in carbon tetrachloride-induced liver fibrosis and activated HSCs. Effects of miR-378a-3p overexpression on HSC activation and Wnt/β-catenin pathway were analyzed. Bioinformatic analysis was employed to identify the potential targets of miR-378a-3p. Serum miR-378a-3p expression was analyzed in patients with cirrhosis. Results: Reduced miR-378a-3p expression was observed in the fibrotic liver tissues and activated HSCs. Up-regulation of miR-378a-3p inhibited HSC activation including cell proliferation, α-smooth muscle actin (α-SMA) and collagen expression. Moreover, miR-378a-3p overexpression resulted in Wnt/β-catenin pathway inactivation. Luciferase reporter assays demonstrated that Wnt10a, a member of Wnt/β-catenin pathway, was confirmed to be a target of miR-378a-3p. By contrast, miR-378a-3p inhibitor contributed to HSC activation, with an increase in cell proliferation, α-SMA and collagen expression. But all these effects were blocked down by silencing of Wnt10a. Notably, sera from patients with cirrhosis contained lower levels of miR-378a-3p than sera from healthy controls. Receiver operating characteristic curve analysis suggested that serum miR-378a-3p differentiated liver cirrhosis patients from healthy controls, with an area under the curve of ROC curve of 0.916. Conclusion: miR-378a-3p suppresses HSC activation, at least in part, via targeting of Wnt10a, supporting its potential utility as a novel therapeutic target for liver fibrosis.


Biomedicine & Pharmacotherapy | 2016

Ghrelin protects against palmitic acid or lipopolysaccharide-induced hepatocyte apoptosis through inhibition of MAPKs/iNOS and restoration of Akt/eNOS pathways.

Yuqing Mao; Jianbo Wang; Fujun Yu; Zhengyang Li; Huanqing Li; Chuanyong Guo; Xiaoming Fan

BACGROUND Ghrelin has been shown to exert various biological functions. However, the effect and mechanism of ghrelin on PA- or LPS-induced liver injury remains unknown. METHODS Normal human hepatocyte lines (LO2 and 7701) were pretreated with ghrelin (10-8M) for 30min before stimulation with lipopolysaccharide (LPS) or palmitic acid (PA). The proliferation and apoptosis of cells were detected with CCK8, Hoechst staining and flow cytometric analysis. Levels of NO of cell supernatants were examined by enzyme-linked immunosorbent assay (ELISA). The protein levels and mRNA of target genes of endothelial NOS (eNOS) and inducible NOS (iNOS) were measured by western blotting, immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR). The expression of Bax, Bcl2, caspase 3, p-Akt, p-P38 and p-JNK were detected by western blotting. RESULTS Results of CCK8, Hoechst staining and flow cytometric analysis showed that ghrelin-pretreatment attenuated LPS- or PA- induced cellular proliferation inhibition and apoptosis induction. ELISA results revealed that ghrelin pretreatment reduced levels of NO of cell supernatants (P<0.05). Results of western blotting and immunofluorescence showed that protein levels of iNOS in ghrelin- pretreated group were significantly reduced compared with LPS- or PA- treated group, while protein levels of eNOS were restored by ghrelin pretreatment. Results of qRT-PCR showed that mRNA levels of Bax, iNOS were reduced by ghrelin pretreatment, while levels of mRNA of Bcl2 and eNOS were increased (P<0.05). The protein levels of pAkt were significantly increased by ghrelin pretreatment, while the protein levels of p-JNK, p-P38 and caspase 3 were reduced. The restoration of eNOS could be reversed by an Akt inhibitor. CONCLUSIONS Ghrelin pretreatment attenuated LPS- or PA-induced hepatocyte apoptosis, which may least partly via inhibition of mitogen-activated protein kinases (MAPKs)/iNOS and restoration of Akt/eNOS pathways.


Drug Design Development and Therapy | 2015

Ghrelin reduces liver impairment in a model of concanavalin A-induced acute hepatitis in mice

Yuqing Mao; Jianbo Wang; Fujun Yu; Jian Cheng; Huanqing Li; Chuanyong Guo; Xiaoming Fan

Background and aims Ghrelin is a 28-amino-acid gut hormone that was first discovered as a potent growth hormone secretagogue. Recently, it has been shown to exert a strong anti-inflammatory effect. The purpose of the study reported here was to explore the effect and mechanism of ghrelin on concanavalin (Con) A-induced acute hepatitis. Methods Balb/C mice were divided into four groups: normal control (NC) (mice injected with vehicle [saline]); Con A (25 mg/kg); Con A + 10 μg/kg ghrelin; and Con A + 50 μg/kg ghrelin (1 hour before Con A injection). Pro-inflammatory cytokine levels were detected. Protein levels of phosphoinositide 3-kinase (PI3K); phosphorylated Akt (p-Akt); caspase 3, 8, and 9; and microtubule-associated protein 1 light chain 3 (LC3) were also detected. Perifosine (25 mM) (an Akt inhibitor) was used to investigate whether the protective effect of ghrelin was interrupted by an Akt inhibitor. Protein levels of p-AKT; Bcl-2; Bax; and caspase 3, 8, and 9 were also detected. Results Aspartate aminotransferase, alanine aminotransferase, and pathological damage were significantly ameliorated by ghrelin pretreatment in Con A-induced hepatitis. Inflammatory cytokines were significantly reduced by ghrelin pretreatment. Bcl-2; Bax; and caspase 3, 8, and 9 expression were also clearly affected by ghrelin pretreatment, compared with the Con A-treated group. However, the Akt kinase inhibitor reversed the decrease of Bax and caspase 3, 8, 9, and reduced the protein level of p-Akt and Bcl-2. Ghrelin activated the PI3K/Akt/Bcl-2 pathway and inhibited activation of autophagy. Conclusion Our results demonstrate that ghrelin attenuates Con A-induced acute immune hepatitis by activating the PI3K/Akt pathway and inhibiting the process of autophagy, which might be related to inhibition of inflammatory cytokine release, and prevention of hepatocyte apoptosis. These effects could be interrupted by an Akt kinase inhibitor.


Cellular Physiology and Biochemistry | 2017

LincRNA-p21 Inhibits the Wnt/β-Catenin Pathway in Activated Hepatic Stellate Cells via Sponging MicroRNA-17-5p

Fujun Yu; Yong Guo; Bicheng Chen; Liang Shi; Peihong Dong; Meng-Tao Zhou; Jianjian Zheng

Background/Aims: It is known that the activation of hepatic stellate cells (HSCs) is a pivotal step in the initiation and progression of liver fibrosis. Aberrant activated Wnt/β-catenin pathway is known to accelerate the development of liver fibrosis. microRNAs (miRNAs)-mediated Wnt/β-catenin pathway has been reported to be involved in HSC activation during liver fibrosis. However, whether long noncoding RNAs (lncRNAs) regulate Wnt/β-catenin pathway during HSC activation still remains unclear. Methods: Long intergenic noncoding RNA-p21 (lincRNA-p21) expression was detected in Salvianolic acid B (Sal B)-treated cells. Effects of lincRNA-p21 knockdown on HSC activation and Wnt/β-catenin pathway activity were analyzed in Sal B-treated cells. In lincRNA-p21-overexpressing cells, effects of miR-17-5p on HSC activation and Wnt/β-catenin pathway activity were examined. Results: LincRNA-p21 expression was up-regulated in HSCs after Sal B treatment. In primary HSCs, lincRNA-p21 expression was down-regulated at Day 5 relative to Day 2. Sal B-inhibited HSC activation including the reduction of cell proliferation, α-smooth muscle actin (α-SMA) and type I collagen was inhibited by lincRNA-p21 knockdown. Sal B-induced Wnt/β-catenin pathway inactivation was blocked down by loss of lincRNA-p21. Notably, lincRNA-p21, confirmed as a target of miR-17-5p, suppresses miR-17-5p level. Lack of the miR-17-5p binding site in lincRNA-p21 prevents the suppression of miR-17-5p expression. In addition, the suppression of HSC activation and Wnt/β-catenin pathway induced by lincRNA-p21 overexpression was almost inhibited by miR-17-5p. Conclusion: We demonstrate that lincRNA-p21-inhibited Wnt/β-catenin pathway is involved in the effects of Sal B on HSC activation and lincRNA-p21 suppresses HSC activation, at least in part, via miR-17-5p-mediated-Wnt/β-catenin pathway.


Cellular Physiology and Biochemistry | 2016

The Epigenetically-Regulated microRNA-378a Targets TGF-β2 in TGF-β1-Treated Hepatic Stellate Cells

Fujun Yu; Jianhuan Yang; Kate Huang; Xiaodong Pan; Bicheng Chen; Peihong Dong; Jianjian Zheng

Background/Aims: In liver fibrosis, the activation of hepatic stellate cells (HSCs) is considered as a pivotal event. It is well known that transforming growth factor-β1 (TGF-β1) is the main stimuli factor responsible for HSC activation. microRNAs (miRNAs), regulating various biological processes, have recently been shown to be involved in HSC activation. A recent study reported that deficiency of miR-378a contributes to cardiac fibrosis via TGF-β1-dependent paracrine mechanism. However, the involvement of miR-378a and its roles in TGF-β1-induced HSC activation remains largely unknown. Methods: miR-378a expression was detected in TGF-β1-treated cells and patients with cirrhosis. Then, effects of miR-378a overexpression on cell proliferation and HSC activation were analyzed. We also analyzed the binding of miR-378a to the 3′-untranslated region of TGF-β2. Results: In response to TGF-β1, miR-378a expression was down-regulated in a dose-dependent manner. miR-378a overexpression suppressed both cell proliferation and cell cycle in TGF-β1-treated LX-2 cells. Moreover, miR-378a overexpression inhibited TGF-β1-induced HSC activation including the reduction of α-smooth muscle actin (α-SMA) and type I collagen. Similarly, miR-378a resulted in a reduction in cell proliferation, and the expressions of α-SMA and Col1A1 in TGF-β1-treated primary HSCs. Notably, TGF-β2 was confirmed as a target of miR-378a by luciferase reporter assays. Interestingly, miR-378a promoter methylation may be responsible for miR-378a down-regulation in TGF-β1-treated LX-2 cells and TGF-β1-treated primary HSCs. Further studies confirmed that reduced miR-378a was associated with promoter methylation in patients with cirrhosis compared with healthy controls. Conclusion: Our results demonstrate that miR-378a expression is associated with its methylation status in TGF-β1-treated cells, and epigenetically-regulated miR-378a inhibits TGF-β1-induced HSC activation, at least in part, via TGF-β2.

Collaboration


Dive into the Fujun Yu's collaboration.

Top Co-Authors

Avatar

Jianjian Zheng

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Peihong Dong

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bicheng Chen

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianbo Wang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng-Tao Zhou

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge