Fulvia Tambone
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fulvia Tambone.
Chemosphere | 2010
Fulvia Tambone; Barbara Scaglia; Giuliana D’Imporzano; Andrea Schievano; Valentina Orzi; Silvia Salati; Fabrizio Adani
Digestate, with biogas represents the final products of anaerobic digestion (AD). The methane-rich biogas is used to produce electricity and heat, whereas the digestate could be valorized in agriculture. Contrarily to well-recognized biomasses such as digested sludge and compost, the properties of the digestate are not well known and its agricultural use remains unexplored. In this work, a first attempt to study the agronomic properties of digestates was performed by comparing the chemical, spectroscopic, and biological characteristics of digestates with those of compost and digested sludge, used as reference organic matrices. A total of 23 organic matrices were studied, which include eight ingestates and relative digestates, three composts, and four digested sludges. The analytical data obtained was analyzed using principal component analysis to better show in detail similarities or differences between the organic matrices studied. The results showed that digestates differed from ingestates and also from compost, although the starting organic mix influenced the digestate final characteristics. With respect to amendment properties, it seems that biological parameters, more than chemical characteristics, were more important in describing these features. In this way, amendment properties could be ranked as follows: compost≅digestate>digested sludge≫ingestate. As to fertilizer properties, AD allowed getting a final product (digestate) with very good fertilizing properties because of the high nutrient content (N, P, K) in available form. In this way, the digestate appears to be a very good candidate to replace inorganic fertilizers, also contributing, to the short-term soil organic matter turnover.
Bioresource Technology | 2009
Fulvia Tambone; Pierluigi Genevini; Giuliana D’Imporzano; Fabrizio Adani
The transformation of organic matter during anaerobic digestion of mixtures of energetic crops, cow slurry, agro-industrial waste and organic fraction of municipal solid waste (OFMSW) was studied by analysing different samples at diverse points during the anaerobic digestion process in a full-scale plant. Both chemical (fiber analysis) and spectroscopic approaches ((13)C CPMAS NMR) indicated the anaerobic digestion process proceeded by degradation of more labile fraction (e.g. carbohydrate-like molecules) and concentration of more recalcitrant molecules (lignin and non-hydrolysable lipids). These modifications determined a higher degree of biological stability of digestate with respect to the starting mixture, as suggested, also, by the good correlations found between the cumulative oxygen uptake (OD(20)), and the sum of (cellulose+hemicellulose+cell soluble) contents of biomasses detected by fiber analysis (r=0.99; P<0.05), and both O-alkyl-C (r=0.98; P<0.05) and alkyl-C (r=-0.99; P<0.05) measured by (13)C CPMAS NMR.
Compost Science & Utilization | 1995
Fabrizio Adani; P.L. Genevini; Fulvia Tambone
A new organic matter stability index (S.I.) has been developed determining the humic acid content in samples of compost, both as they stand and when subjected to treatment with apolar and polar solvents and acid hydrolyses for the purpose of eliminating substances (pseudo-humic substances) that interfere with analytical determination of the same. The index, which registers values between zero and one, easily relates to the degree of stability and maturity of organic matter. Checks on the reliability of the index when applied to 10 different types of organic matrices have confirmed its usefulness for direct measurement of the degree of stability (SI > 0.6) and maturity (SI > 0.8) of organic matter, as well as the effectiveness of the analytical method proposed for determining the humified fraction content in organic matter, as a means of obtaining more realistic values, especially in the case of immature substrates.
Compost Science & Utilization | 2000
Barbara Scaglia; Fulvia Tambone; P.L. Genevini; Fabrizio Adani
Forty-five organic matrices of different types and origin were subjected to the test for the determination of biological stability by means of dynamic respirometric measurement (DRI) and static respirometric measurement (SRI). The results obtained from the comparison between the two indexes indicated that the SRI, compared with the DRI, underestimates the consumption of oxygen by the biomasses and consequently their rate of biological stability by a factor equal to 2. From the analysis of the data it is possible to define the biological stability as DRI<1000 mgO2kg−1VSh−1. The DRI data were correlated with the temperatures of the biomasses showing a linear correlation (R2=0.81, p<0.01) only for stable matrices while for nonstable matrices no significant correlation is found.
Environmental Science & Technology | 2011
Fabrizio Adani; Gabriella Papa; Andrea Schievano; Giovanni Cardinale; Giuliana D'Imporzano; Fulvia Tambone
The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO(2) at 273 K and N(2) at 77 K) to detect mesoporosity (pore size of 1.5-30 nm diameter; MeS) and microporosity (pore size of 0.3-1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = -0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.
Bioresource Technology | 2011
Fulvia Tambone; Barbara Scaglia; S. Scotti; Fabrizio Adani
In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas.
Waste Management | 2009
Enzo Montoneri; Vittorio Boffa; Piero Savarino; Fulvia Tambone; Fabrizio Adani; Lucca Micheletti; Carlo Gianotti; Roberto Chiono
A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4gL(-1) critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4gL(-1). This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21C/N ratio, was extracted for 24h at 65 degrees C under N2 with aqueous 0.1molL(-1) NaOH and 0.1molL(-1) Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (DeltaE) and uniformity (sigmaDeltaE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125xcmc for cHAL and to 4-22xcmc for SDS. The vis-a-vis comparison of the two surfactants gave the following results: in the TD case the cHAL biosurfactant at 0.4gL(-1) yields good colour intensity and equal colour uniformity as SDS at 5gL(-1), in the SW case cHAL was found to enhance CWPAH by a factor of 2-4 relative to SDS with one soil, whereas with the other soil the two surfactants behaved similarly. The Cre data, however, showed that both soils absorbed by far more SDS (68-95%) than cHAL (12-54%). The results point out intriguing technological and environmental perspectives deriving from the use of compost isolated biosurfactants in the place of synthetic surfactants.
Compost Science & Utilization | 1999
Fabrizio Adani; P.L. Genevini; F. Gasperi; Fulvia Tambone
The development of humic substances in the course of four composting processes was monitored quantitatively, recording both relative and absolute contents. Relative data showed contrasting results if the humic substances (HS) were related to the dry matter (d.m.) or to volatile solids (VS). Humic substances were apparently formed because of a concentration effect due to organic matter degradation. If absolute contents were considered, a decrease in the humic substances was observed, above all in the early stages of the process, due, probably, to degradation of the organic material, such as proteins, carbohydrates and lipids, coextracted with the humic substances. Processing of the data in respect of humic substance content over 13 composting processes and one study on the degradation of plant residues in soils, confirmed that no net humic substances are formed during composting and that the humification should be interpreted merely as degradation of the organic matter associated with the humic substances,...
Environmental Pollution | 2010
Silvia Salati; G. Quadri; Fulvia Tambone; Fabrizio Adani
In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals.
Bioresource Technology | 2015
Luca Corno; Roberto Pilu; Fulvia Tambone; Barbara Scaglia; Fabrizio Adani
Giant cane is a promising non-food crop for biogas production. Giant cane and corn silages coming from full-scale fields were tested, in mixtures with pig slurry, for biomethane production by a continuous stirred tank lab-scale-reactor (CSTR) approach. Results indicated that giant cane produced less biomethane than corn, i.e. 174±10 N m(3) CH4 Mg(-1) TS(-1) and 245±26 N m(3) CH4 Mg(-1) TS(-1), respectively. On the other hand, because of its high field biomass production, the biogas obtainable per Ha was higher for giant cane than for corn, i.e. 12,292 N m(3) CH4 Ha(-1) and 4549 N m(3) CH4 Ha(-1), respectively. Low energetic and agronomic inputs for giant cane cultivation led to a considerable reduction in the costs of producing both electricity and biomethane, i.e. 0.50 € N m(-3) CH4(-1) and 0.81 € N m(-3) CH4(-1), and 0.10 € kW hEE(-1) and 0.19 € kW hEE(-1) for biomethane and electricity production, and for giant cane and corn mixtures respectively.