Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumi Murakoshi is active.

Publication


Featured researches published by Fumi Murakoshi.


Scientific Reports | 2013

Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular β-tubulin

Hitoshi Takemae; Tatsuki Sugi; Kyousuke Kobayashi; Haiyan Gong; Akiko Ishiwa; Frances C. Recuenco; Fumi Murakoshi; Tatsuya Iwanaga; Atsuko Inomata; Taisuke Horimoto; Hiroomi Akashi; Kentaro Kato

Toxoplasma rhoptry neck protein 4 (TgRON4) is a component of the moving junction macromolecular complex that plays a central role during invasion. TgRON4 is exposed on the cytosolic side of the host cell during invasion, but its molecular interactions remain unclear. Here, we identified host cellular β-tubulin as a binding partner of TgRON4, but not Plasmodium RON4. Coimmunoprecipitation studies in mammalian cells demonstrated that the C-terminal 15-kDa region of β-tubulin was sufficient for binding to TgRON4, and that a 17-kDa region in the proximal C-terminus of TgRON4 was required for binding to the C-terminal region of β-tubulin. Analysis of T. gondii-infected lysates from CHO cells expressing the TgRON4-binding region showed that the C-terminal region of β-tubulin interacted with TgRON4 at early invasion step. Our results provide evidence for a parasite-specific interaction between TgRON4 and the host cell cytoskeleton in parasite-infected cells.


Scientific Reports | 2015

Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro

Frances C. Recuenco; Kyousuke Kobayashi; Akiko Ishiwa; Yukiko Enomoto-Rogers; Noreen Grace V. Fundador; Tatsuki Sugi; Hitoshi Takemae; Tatsuya Iwanaga; Fumi Murakoshi; Haiyan Gong; Atsuko Inomata; Taisuke Horimoto; Tadahisa Iwata; Kentaro Kato

Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity.


International Journal for Parasitology-Drugs and Drug Resistance | 2013

Identification of mutations in TgMAPK1 of Toxoplasma gondii conferring resistance to 1NM-PP1

Tatsuki Sugi; Kyousuke Kobayashi; Hitoshi Takemae; Haiyan Gong; Akiko Ishiwa; Fumi Murakoshi; Frances C. Recuenco; Tatsuya Iwanaga; Taisuke Horimoto; Hiroomi Akashi; Kentaro Kato

Graphical abstract


Mbio | 2016

Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development

Tatsuki Sugi; Yan Fen Ma; Tadakimi Tomita; Fumi Murakoshi; Michael S. Eaton; Rama Yakubu; Bing Han; Vincent Tu; Kentaro Kato; Shin-ichiro Kawazu; Nishith Gupta; Elena S. Suvorova; Michael W. White; Kami Kim; Louis M. Weiss

ABSTRACT Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects warm-blooded vertebrates, including humans. Asexual reproduction in T. gondii allows it to switch between the rapidly replicating tachyzoite and quiescent bradyzoite life cycle stages. A transient cyclic AMP (cAMP) pulse promotes bradyzoite differentiation, whereas a prolonged elevation of cAMP inhibits this process. We investigated the mechanism(s) by which differential modulation of cAMP exerts a bidirectional effect on parasite differentiation. There are three protein kinase A (PKA) catalytic subunits (TgPKAc1 to -3) expressed in T. gondii. Unlike TgPKAc1 and TgPKAc2, which are conserved in the phylum Apicomplexa, TgPKAc3 appears evolutionarily divergent and specific to coccidian parasites. TgPKAc1 and TgPKAc2 are distributed in the cytomembranes, whereas TgPKAc3 resides in the cytosol. TgPKAc3 was genetically ablated in a type II cyst-forming strain of T. gondii (PruΔku80Δhxgprt) and in a type I strain (RHΔku80Δhxgprt), which typically does not form cysts. The Δpkac3 mutant exhibited slower growth than the parental and complemented strains, which correlated with a higher basal rate of tachyzoite-to-bradyzoite differentiation. 3-Isobutyl-1-methylxanthine (IBMX) treatment, which elevates cAMP levels, maintained wild-type parasites as tachyzoites under bradyzoite induction culture conditions (pH 8.2/low CO2), whereas the Δpkac3 mutant failed to respond to the treatment. This suggests that TgPKAc3 is the factor responsible for the cAMP-dependent tachyzoite maintenance. In addition, the Δpkac3 mutant had a defect in the production of brain cysts in vivo, suggesting that a substrate of TgPKAc3 is probably involved in the persistence of this parasite in the intermediate host animals. IMPORTANCE Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that TgPKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation. Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that TgPKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation.


Parasitology International | 2013

Characterization of Plasmodium falciparum cdc2-related kinase and the effects of a CDK inhibitor on the parasites in erythrocytic schizogony.

Tatsuya Iwanaga; Tatsuki Sugi; Kyousuke Kobayashi; Hitoshi Takemae; Haiyan Gong; Akiko Ishiwa; Fumi Murakoshi; Frances C. Recuenco; Taisuke Horimoto; Hiroomi Akashi; Kentaro Kato

The cell cycle of Plasmodium is unique among major eukaryotic cell cycle models. Cyclin-dependent kinases (CDKs) are thought to be the key molecular switches that regulate cell cycle progression in the parasite. However, little information is available about Plasmodium CDKs. The present study was performed to investigate the effects of a CDK inhibitor, olomoucine, on the erythrocytic growth of Plasmodium falciparum. This agent inhibited the growth of the parasite at the trophozoite/schizont stage. Furthermore, we characterized the Plasmodium CDK homolog, P. falciparum cdc2-related kinase-1 (Pfcrk-1), which is a potential target of olomoucine. We synthesized a functional kinase domain of Pfcrk-1 as a GST fusion protein using a wheat germ protein expression system, and examined its phosphorylation activity. The activity of this catalytic domain was higher than that of GST-GFP control, but the same as that of a kinase-negative mutant of Pfcrk-1. After the phosphatase treatment, the labeling of [γ-(32)P]ATP was abolished. Recombinant human cyclin proteins were added to these kinase reactions, but there were no differences in activity. This report provides important information for the future investigation of Plasmodium CDKs.


Analytical Biochemistry | 2014

Microplate assay for screening Toxoplasma gondii bradyzoite differentiation with DUAL luciferase assay.

Tatsuki Sugi; Tatsunori Masatani; Fumi Murakoshi; Shin-ichiro Kawazu; Kentaro Kato

Toxoplasma gondii can differentiate into tachyzoites or bradyzoites. To accelerate the investigation of bradyzoite differentiation mechanisms, we constructed a reporter parasite, PLK/DLUC_1C9, for a high-throughput assay. PLK/DLUC_1C9 expressed firefly luciferase under the bradyzoite-specific BAG1 promoter. Firefly luciferase activity was detected with a minimum of 10(2) parasites induced by pH 8.1. To normalize bradyzoite differentiation, PLK/DLUC_1C9 expressed Renilla luciferase under the parasites α-tubulin promoter. Renilla luciferase activity was detected with at least 10(2) parasites. By using PLK/DLUC_1C9 with this 96-well format screening system, we found that the protein kinase inhibitor analogs, bumped kinase inhibitors 1NM-PP1, 3MB-PP1, and 3BrB-PP1, had bradyzoite-inducing effects.


Virus Research | 2016

Molecular epidemiological analyses of Cryptosporidium parvum virus 1 (CSpV1), a symbiotic virus of Cryptosporidium parvum, in Japan

Fumi Murakoshi; Madoka Ichikawa-Seki; Junya Aita; Seiko Yaita; Aiko Kinami; Katsuhisa Fujimoto; Yoshifumi Nishikawa; Shin Murakami; Taisuke Horimoto; Kentaro Kato

We show that Cryptosporidium parvum virus 1 (CSpV1), a member of the family Partitiviridae, genus Cryspovirus that can infect Cryptosporidium parvum, is a new candidate for high-resolution tool for tracing C. parvum. CSpV1 was detected in all C. parvum-positive samples tested. Phylogenetic analysis of dsRNA1 sequence from CSpV1 can distinguish infected areas of C. parvum on the national level. Sequences detected in samples from Iwate prefecture and other islands (Tanegashima, and Okinawa) belonged to a single clade. This system can differentiate the samples from Hokkaido and south part of Japan as well as from other countries. Samples from Iwate, Tanegashima, and Okinawa belonged to a single subclade, respectively. Therefore, the CSpV1 dsRNA sequences reflect the regional distribution of their host and have potential as a high-resolution tool to trace C. parvum IIaA15G2R1 subtype.


Scientific Reports | 2015

Heparin interacts with elongation factor 1α of Cryptosporidium parvum and inhibits invasion

Atsuko Inomata; Fumi Murakoshi; Akiko Ishiwa; Ryo Takano; Hitoshi Takemae; Tatsuki Sugi; Frances C. Recuenco; Taisuke Horimoto; Kentaro Kato

Cryptosporidium parvum is an apicomplexan parasite that can cause serious watery diarrhea, cryptosporidiosis, in human and other mammals. C. parvum invades gastrointestinal epithelial cells, which have abundant glycosaminoglycans on their cell surface. However, little is known about the interaction between C. parvum and glycosaminoglycans. In this study, we assessed the inhibitory effect of sulfated polysaccharides on C. parvum invasion of host cells and identified the parasite ligands that interact with sulfated polysaccharides. Among five sulfated polysaccharides tested, heparin had the highest, dose-dependent inhibitory effect on parasite invasion. Heparan sulfate-deficient cells were less susceptible to C. parvum infection. We further identified 31 parasite proteins that potentially interact with heparin. Of these, we confirmed that C. parvum elongation factor 1α (CpEF1α), which plays a role in C. parvum invasion, binds to heparin and to the surface of HCT-8 cells. Our results further our understanding of the molecular basis of C. parvum infection and will facilitate the development of anti-cryptosporidial agents.


Malaria Journal | 2014

Lambda-carrageenan treatment exacerbates the severity of cerebral malaria caused by Plasmodium berghei ANKA in BALB/c mice

Frances C. Recuenco; Ryo Takano; Shiori Chiba; Tatsuki Sugi; Hitoshi Takemae; Fumi Murakoshi; Akiko Ishiwa; Atsuko Inomata; Taisuke Horimoto; Yoshiyasu Kobayashi; Noriyuki Horiuchi; Kentaro Kato

BackgroundThere is an urgent need to develop and test novel compounds against malaria infection. Carrageenans, sulphated polysaccharides derived from seaweeds, have been previously shown to inhibit Plasmodium falciparum in vitro. However, they are inflammatory and alter the permeability of the blood–brain barrier, raising concerns that their use as a treatment for malaria could lead to cerebral malaria (CM), a severe complication of the disease. In this work, the authors look into the effects of the administration of λ-carrageenan to the development and severity of CM in BALB/c mice, a relatively non-susceptible model, during infection with the ANKA strain of Plasmodium berghei.MethodsFive-week-old female BALB/c mice were infected with P. berghei intraperitoneally. One group was treated with λ-carrageenan (PbCGN) following the 4-day suppressive test protocol, whereas the other group was not treated (PbN). Another group of healthy BALB/c mice was similarly given λ-carrageenan (CGN) for comparison. The following parameters were assessed: parasitaemia, clinical signs of CM, and mortality. Brain and other vital organs were collected and examined for gross and histopathological lesions. Evans blue dye assays were employed to assess blood–brain barrier integrity.ResultsPlasmodium berghei ANKA-infected BALB/c mice treated with λ-carrageenan died earlier than those that received no treatment. Histopathological examination revealed that intracerebral haemorrhages related to CM were present in both groups of infected BALB/c mice, but were more numerous in those treated with λ-carrageenan than in mock-treated animals. Inflammatory lesions were also observed only in the λ-carrageenan-treated mice. These observations are consistent with the clinical signs associated with CM, such as head tilt, convulsions, and coma, which were observed only in this group, and may account for the earlier death of the mice.ConclusionThe results of this study indicate that the administration of λ-carrageenan exacerbates the severe brain lesions and clinical signs associated with CM in BALB/c mice infected with P. berghei ANKA.


Parasitology Research | 2016

Detection and molecular characterization of Cryptosporidium and Eimeria species in Philippine bats.

Fumi Murakoshi; Frances C. Recuenco; Tsutomu Omatsu; Kaori Sano; Satoshi Taniguchi; Joseph S. Masangkay; Philip Alviola; Eduardo Eres; Edison Cosico; James Alvarez; Yumi Une; Shigeru Kyuwa; Yuki Sugiura; Kentaro Kato

The genus Cryptosporidium, which is an obligate intracellular parasite, infects various vertebrates and causes a diarrheal disease known as cryptosporidiosis. Bats are naturally infected with zoonotic pathogens; thus, they are potential reservoirs of parasites. We investigated the species and genotype distribution as well as prevalence of Cryptosporidium and Eimeria in Philippine bats. We captured and examined 45 bats; four were positive for Cryptosporidium spp. and seven were positive for Eimeria spp. We detected Cryptosporidium bat genotype II from Ptenochirus jagori. Three other Cryptosporidium sequences, detected from Rhinolophus inops, Cynopterus brachyotis, and Eonycteris spelaea, could not be classified as any known species or genotype; we therefore propose the novel genotype Cryptosporidium bat genotypes V, VI, and VII. Bat genotype V is associated with human cryptosporidiosis clade, and therefore, this genotype may be transmissible to humans. Among the Eimeria sequences, BE3 detected from Scotophilus kuhlii was classified with known bat and rodent clades; however, other sequences detected from C. brachyotis, E. spelaea, Rousettus amplexicaudatus, and R. inops could not be classified with known Eimeria species. These isolates might represent a new genotype. Our findings demonstrate that the bats of the Philippines represent a reservoir of multiple Cryptosporidium and Eimeria spp.

Collaboration


Dive into the Fumi Murakoshi's collaboration.

Top Co-Authors

Avatar

Kentaro Kato

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsuki Sugi

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitoshi Takemae

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge