Fumi Ota
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fumi Ota.
American Journal of Respiratory Cell and Molecular Biology | 2013
Satoshi Kobayashi; Reiko Fujinawa; Fumi Ota; Shiho Kobayashi; Takashi Angata; Manabu Ueno; Toshitaka Maeno; Shinobu Kitazume; Keiichi Yoshida; Takeo Ishii; Congxiao Gao; Kazuaki Ohtsubo; Yoshiki Yamaguchi; Tomoko Betsuyaku; Kozui Kida; Naoyuki Taniguchi
Chronic obstructive pulmonary disease (COPD), manifested as emphysema and chronic airway obstruction, can be exacerbated by bacterial and viral infections. Although the frequency of exacerbations increases as the disease progresses, the mechanisms underlying this phenomenon are largely unknown, and there is a need for a simple in vivo exacerbation model. In this study, we compared four groups of mice treated with PBS alone, elastase alone, LPS alone, and elastase plus LPS. A single intratracheal administration of LPS to mice with elastase-induced emphysema provoked infiltration of inflammatory cells, especially CD8(+) T cells, into alveolar spaces and increased matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and perforin production in bronchoalveolar lavage fluid at the acute inflammatory phase compared with the other groups. We also measured the percentage of low-attenuation area (LAA%) in the above mice using micro-computed X-ray tomography. The LAA% was the most sensitive parameter for quantitative assessments of emphysema among all the parameters evaluated. Using the parameter of LAA%, we found significantly more severe alveolar destruction in the group treated with elastase plus LPS compared with the other groups during long-term longitudinal observations. We built three-dimensional images of the emphysema and confirmed that the lungs of elastase plus LPS-treated mice contained larger emphysematous areas than mice treated with elastase alone. Although human exacerbation of COPD is clinically and pathologically complicated, this simple mouse model mimics human cases to some extent and will be useful for elucidating its mechanism and developing therapeutic strategies.
Journal of Biological Chemistry | 2012
Congxiao Gao; Toshitaka Maeno; Fumi Ota; Manabu Ueno; Hiroaki Korekane; Shinji Takamatsu; Ken Shirato; Akio Matsumoto; Satoshi Kobayashi; Keiichi Yoshida; Shinobu Kitazume; Kazuaki Ohtsubo; Tomoko Betsuyaku; Naoyuki Taniguchi
Background: Fut8−/− mice show emphysematous lesions, the major risk factor for which is exposure to cigarette smoke (CS). Results: Fut8+/− mice developed CS-induced emphysematous lesions, which are associated with an aberrant Smad7-Smad2-matrix metalloproteinase signaling pathway. Conclusion: Genetic ablation of Fut8 increases sensitivity to CS-induced emphysema. Significance: Core fucosylation appears to be involved in the development of chronic obstructive pulmonary disease. We previously demonstrated that a deficiency in core fucosylation caused by the genetic disruption of α1,6-fucosyltransferase (Fut8) leads to lethal abnormalities and the development of emphysematous lesions in the lung by attenuation of TGF-β1 receptor signaling. Herein, we investigated the physiological relevance of core fucosylation in the pathogenesis of emphysema using viable heterozygous knock-out mice (Fut8+/−) that were exposed to cigarette smoke (CS). The Fut8+/− mice exhibited a marked decrease in FUT8 activity, and matrix metalloproteinase (MMP)-9 activities were elevated in the lung at an early stage of exposure. Emphysema developed after a 3-month CS exposure, accompanied by the recruitment of large numbers of macrophages to the lung. CS exposure substantially and persistently elevated the expression level of Smad7, resulting in a significant reduction of Smad2 phosphorylation (which controls MMP-9 expression) in Fut8+/− mice and Fut8-deficient embryonic fibroblast cells. These in vivo and in vitro studies show that impaired core fucosylation enhances the susceptibility to CS and constitutes at least part of the disease process of emphysema, in which TGF-β-Smad signaling is impaired and the MMP-mediated destruction of lung parenchyma is up-regulated.
Journal of Biochemistry | 2010
Hiroaki Korekane; Akio Matsumoto; Fumi Ota; Tomoko Hasegawa; Yoshiko Misonou; Kyoko Shida; Yasuhide Miyamoto; Naoyuki Taniguchi
The alpha2,6-sialylated blood group type 2H (ST2H) antigen (Fucalpha1-2(NeuAcalpha2-6)Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) is a fucoganglioside found in human colon cancer tissues. To elucidate an enzyme responsible for the ST2H antigen formation, we screened some partially purified candidate enzymes, alpha2,6-sialyltransferases, ST6Gal I and ST6Gal II, and alpha1,2-fucosyltransferases, FUT1 and FUT2 for their activities towards pyridylaminated type 2H (Fucalpha1-2Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) or LS-tetrasaccharide c (LST-c: NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) as acceptor substrates. Here we show the ST6Gal I transfers NeuAc from the donor CMP-NeuAc to the terminal Gal of PA-type 2H, which formed the ST2H antigen, but the others could not synthesize it. Using a recombinant ST6Gal I, enzymatic reactions with two types of acceptors, PA-type 2H and PA-lacto-N-neotetraose (LNnT), were kinetically analysed. On the basis of catalytic efficiency (V(max)/K(m)), the specificity of ST6Gal I towards the PA-type 2H was estimated to be 42 times lower than that for PA-LNnT. The overexpression of ST6Gal I in human colon cancer DLD-1 cells effectively resulted in the ST2H antigen formation, as judged by LC-ESI-IT-MS. Many lines of evidence suggest the up-regulation of ST6Gal I in human colon cancer specimens. Collectively, these findings indicate that ST6Gal I is responsible for ST2H antigen biosynthesis in human colon cancer cells.
Biochemical and Biophysical Research Communications | 2013
Ken Shirato; Congxiao Gao; Fumi Ota; Takashi Angata; Hidehiko Shogomori; Kazuaki Ohtsubo; Keiichi Yoshida; Bernd Lepenies; Naoyuki Taniguchi
Bacterial or viral infection of the airway plays a critical role in the pathogenesis and exacerbation of chronic obstructive pulmonary disease (COPD) which is expected to be the 3rd leading cause of death by 2020. The induction of inflammatory responses in immune cells as well as airway epithelial cells is observed in the disease process. There is thus a pressing need for the development of new therapeutics. Keratan sulfate (KS) is the major glycosaminoglycans (GAGs) of airway secretions, and is synthesized by epithelial cells on the airway surface. Here we report that a KS disaccharide, [SO3(-)-6]Galβ1-4[SO3(-)-6]GlcNAc, designated as L4, suppressed the production of Interleukin-8 (IL-8) stimulated by flagellin, a Toll-like receptor (TLR) 5 agonist, in normal human bronchial epithelial (NHBE) cells. Such suppressions were not observed by other L4 analogues, N-acetyllactosamine or chondroitin-6-sulfate disaccharide. Moreover, treatment of NHBE cells with L4 inhibited the flagellin-stimulated phosphorylation of epidermal growth factor receptor (EGFR), the down stream signaling pathway of TLRs in NHBE cells. These results suggest that L4 specifically blocks the interaction of flagellin with TLR5 and subsequently suppresses IL-8 production in NHBE cells. Taken together, L4 represents a potential molecule for prevention and treatment of airway inflammatory responses to bacteria infections, which play a critical role in exacerbation of COPD.
Biochemical and Biophysical Research Communications | 2012
Koichiro Kamio; Takayuki Yoshida; Congxiao Gao; Takeo Ishii; Fumi Ota; Takashi Motegi; Satoshi Kobayashi; Reiko Fujinawa; Kazuaki Ohtsubo; Shinobu Kitazume; Takashi Angata; Arata Azuma; Akihiko Gemma; Masaharu Nishimura; Tomoko Betsuyaku; Kozui Kida; Naoyuki Taniguchi
Fut8 (α1,6-Fucosyltransferase) heterozygous knock-out (Fut8(+/-)) mice had an increased influx of inflammatory cells into the lungs, and this was associated with an up-regulation of matrix metalloproteinases, MMP-2 and MMP-9, after treatment with porcine pancreatic elastase (PPE), exhibiting an emphysema-prone phenotype as compared with wild type mice (Fut8(+/+)). The present data as well as our previous data on cigarette-smoke-induced emphysema [8] led us to hypothesize that reduced Fut8 levels leads to COPD with increased inflammatory response in humans and is associated with disease progression. To test this hypothesis, symptomatic current or ex-smokers with stable COPD or at risk outpatients were recruited. We investigated the association between serum Fut8 activity and disease severity, including the extent of emphysema (percentage of low-attenuation area; LAA%), airflow limitation, and the annual rate of decline in forced expiratory volume in 1 s (FEV(1)). Association with the exacerbation of COPD was also evaluated over a 3-year period. Serum Fut8 and MMP-9 activity were measured. Fut8 activity significantly increased with age among the at risk patients. In the case of COPD patients, however, the association was not clearly observed. A faster annual decline of FEV(1) was significantly associated with lower Fut8 activity. Patients with lower Fut8 activity experienced exacerbations more frequently. These data suggest that reduced Fut8 activity is associated with the progression of COPD and serum Fut8 activity is a non-invasive predictive biomarker candidate for progression and exacerbation of COPD.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2017
Congxiao Gao; Reiko Fujinawa; Takayuki Yoshida; Manabu Ueno; Fumi Ota; Yasuhiko Kizuka; Tetsuya Hirayama; Hiroaki Korekane; Shinobu Kitazume; Toshitaka Maeno; Kazuaki Ohtsubo; Keiichi Yoshida; Yoshiki Yamaguchi; Bernd Lepenies; Jonas Aretz; Christoph Rademacher; Ahmed E. Hegab; Peter H. Seeberger; Tomoko Betsuyaku; Kozui Kida; Naoyuki Taniguchi
Emphysema is a typical component of chronic obstructive pulmonary disease (COPD), a progressive and inflammatory airway disease. However, no effective treatment currently exists. Here, we show that keratan sulfate (KS), one of the major glycosaminoglycans produced in the small airway, decreased in lungs of cigarette smoke-exposed mice. To confirm the protective effect of KS in the small airway, a disaccharide repeating unit of KS designated L4 ([SO3--6]Galβ1-4[SO3--6]GlcNAc) was administered to two murine models: elastase-induced-emphysema and LPS-induced exacerbation of a cigarette smoke-induced emphysema. Histological and microcomputed tomography analyses revealed that, in the mouse elastase-induced emphysema model, administration of L4 attenuated alveolar destruction. Treatment with L4 significantly reduced neutrophil influx, as well as the levels of inflammatory cytokines, tissue-degrading enzymes (matrix metalloproteinases), and myeloperoxidase in bronchoalveolar lavage fluid, suggesting that L4 suppressed inflammation in the lung. L4 consistently blocked the chemotactic migration of neutrophils in vitro. Moreover, in the case of the exacerbation model, L4 inhibited inflammatory cell accumulation to the same extent as that of dexamethasone. Taken together, L4 represents one of the potential glycan-based drugs for the treatment of COPD through its inhibitory action against inflammation.
Glycobiology | 2014
Kyohei Okahara; Yasuhiko Kizuka; Shinobu Kitazume; Fumi Ota; Kazuki Nakajima; Yoshio Hirabayashi; Motoko Maekawa; Takeo Yoshikawa; Naoyuki Taniguchi
Myelin, a multilamellar structure extended from oligodendrocytes or Schwann cells, plays a critical role in maintenance of neuronal function, and damage or loss of myelin causes demyelinating diseases such as multiple sclerosis. For precise alignment of the myelin sheath, there is a requirement for expression of galactosylceramide (GalCer), a major glycosphingolipid in myelin. Synthesis of GalCer is strictly limited in oligodendrocytes in a developmental stage-specific manner. Ceramide galactosyltransferase (CGT), a key enzyme for biosynthesis of GalCer, exhibits restricted expression in oligodendrocytes but the mechanism is poorly understood. Based on our assumption that particular oligodendrocyte-lineage-specific transcription factors regulate CGT expression, we co-expressed a series of candidate transcription factors with the human CGT promoter-driving luciferase expression in oligodendroglioma cells to measure the promoter activity. We found that Nkx2.2 strongly activated the CGT promoter. In addition, we identified a novel repressive DNA element in the first intron of CGT and OLIG2, an oligodendrocyte-specific transcription factor, as a binding protein of this element. Moreover, overexpression of OLIG2 completely canceled the activating effect of Nkx2.2 on CGT promoter activity. Expression of CGT mRNA was also upregulated by Nkx2.2, but this upregulation was cancelled by co-expression of OLIG2 with Nkx2.2. Our study suggests that CGT expression is controlled by balanced expression of the negative modulator OLIG2 and positive regulator Nkx2.2, providing new insights into how expression of GalCer is tightly regulated in cell-type- and stage-specific manners.
FEBS Letters | 2016
Fumi Ota; Yasuhiko Kizuka; Shinobu Kitazume; Tetsuo Adachi; Naoyuki Taniguchi
Extracellular superoxide dismutase (EC‐SOD or SOD3) protects against various oxidative stress‐related diseases by scavenging reactive superoxides in the extracellular space. It is the only SOD isozyme that is secreted and glycosylated (at asparagine 89). However, the physiological roles of its glycosylation are poorly understood. In this study, we found that the glycosylation site on EC‐SOD is well conserved and that a glycosylation‐deficient EC‐SOD mutant retains its enzymatic activity, but is not secreted. This impairment in secretion may, in part, be due to the ability of the mutants to form unusual higher order oligomers. Our findings reveal that the glycan modification is a key regulator of EC‐SOD secretion and contributes to the understanding of the roles of glycans in EC‐SOD‐related diseases.
Biochimica et Biophysica Acta | 2018
Fumi Ota; Tetsuya Hirayama; Yasuhiko Kizuka; Yoshiki Yamaguchi; Reiko Fujinawa; Masahiro Nagata; Hendra S. Ismanto; Bernd Lepenies; Jonas Aretz; Christoph Rademacher; Peter H. Seeberger; Takashi Angata; Shinobu Kitazume; Keiichi Yoshida; Tomoko Betsuyaku; Kozui Kida; Sho Yamasaki; Naoyuki Taniguchi
BACKGROUND Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application. METHODS We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin. RESULTS We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system. CONCLUSIONS L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin. GENERAL SIGNIFICANCE These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.
Glycobiology | 2017
Fumi Ota; Yasuhiko Kizuka; Miyako Nakano; Yoshiki Yamaguchi; Shinobu Kitazume; Tomomi Ookawara; Naoyuki Taniguchi
Extracellular superoxide dismutase (EC-SOD, SOD3) protects tissues against oxidative damage by detoxifying superoxide anions, particularly in the lungs and cardiovascular system. EC-SOD undergoes several posttranslational modifications including N-glycosylation and proteolytic cleavage. While the roles of proteolytic cleavage have been well studied, the structure and function of EC-SOD N-glycans are poorly understood. Here we analyzed glycan structures on native EC-SOD purified from human sera, and identified sialylated biantennary structures. Using glycan maturation-defective CHO mutant cells, we further revealed that the presence of terminal sialic acids in the N-glycans of EC-SOD enhanced both the secretion and furin-mediated C-terminal cleavage of EC-SOD. These results provide new insights into how the posttranslational modifications of EC-SOD control its functions.