Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumiaki Yokoi is active.

Publication


Featured researches published by Fumiaki Yokoi.


Experimental Neurology | 2005

Generation and characterization of Dyt1 ΔGAG knock-in mouse as a model for early-onset dystonia

Mai T. Dang; Fumiaki Yokoi; Kevin St. P. McNaught; Toni‐Ann Jengelley; Tehone Jackson; Jianyong Li; Yuqing Li

A trinucleotide deletion of GAG in the DYT1 gene that encodes torsinA protein is implicated in the neurological movement disorder of Oppenheims early-onset dystonia. The mutation removes a glutamic acid in the carboxy region of torsinA, a member of the Clp protease/heat shock protein family. The function of torsinA and the role of the mutation in causing dystonia are largely unknown. To gain insight into these unknowns, we made a gene-targeted mouse model of Dyt1 DeltaGAG to mimic the mutation found in DYT1 dystonic patients. The mutated heterozygous mice had deficient performance on the beam-walking test, a measure of fine motor coordination and balance. In addition, they exhibited hyperactivity in the open-field test. Mutant mice also showed a gait abnormality of increased overlap. Mice at 3 months of age did not display deficits in beam-walking and gait, while 6-month mutant mice did, indicating an age factor in phenotypic expression as well. While striatal dopamine and 4-dihydroxyphenylacetic acid (DOPAC) levels in Dyt1 DeltaGAG mice were similar to that of wild-type mice, a 27% decrease in 4-hydroxy, 3-methoxyphenacetic acid (homovanillic acid) was detected in mutant mice. Dyt1 DeltaGAG tissues also have ubiquitin- and torsinA-containing aggregates in neurons of the pontine nuclei. A sex difference was noticed in the mutant mice with female mutant mice exhibiting fewer alterations in behavioral, neurochemical, and cellular changes. Our results show that knocking in a Dyt1 DeltaGAG allele in mouse alters their motor behavior and recapitulates the production of protein aggregates that are seen in dystonic patients. Our data further support alterations in the dopaminergic system as a part of dystonias neuropathology.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum

Mai T. Dang; Fumiaki Yokoi; Henry H. Yin; David M. Lovinger; Yanyan Wang; Yuqing Li

Much research has implicated the striatum in motor learning, but the underlying mechanisms have not been identified. Although NMDA receptor (NMDAR)-dependent long-term potentiation has been observed in the striatum, its involvement in motor learning remains unclear. To examine the role of striatal NMDAR in motor learning, we created striatum-specific NMDAR1 subunit knockout mice, analyzed the striatal anatomy and neuronal morphology of these mice, evaluated their performance on well established motor tasks, and performed electrophysiological recordings to assay striatal NMDAR function and long-term synaptic plasticity. Our results show that deleting the NMDAR1 subunit of the NMDAR specifically in the striatum, which virtually abolished NMDAR-mediated currents, resulted in only small changes in striatal neuronal morphology but severely impaired motor learning and disrupted dorsal striatal long-term potentiation and ventral striatal long-term depression.


Behavioural Brain Research | 2011

Characterization of Atp1a3 mutant mice as a model of rapid-onset dystonia with parkinsonism

Mark P. DeAndrade; Fumiaki Yokoi; Thomas van Groen; Jerry B. Lingrel; Yuqing Li

Rapid-onset dystonia with parkinsonism (RDP) or DYT12 dystonia is a rare form of primary, generalized dystonia. Patients do not present with any symptoms until triggered by a physiological stressor. Within days, patients will show both dystonia and parkinsonism. Mutations resulting in a loss of function in the ATP1A3 gene have been identified as the cause of RDP. ATP1A3 encodes the α3 subunit of the Na(+)/K(+)-ATPase, which is exclusively expressed in neurons and cardiac cells. We have previously created a line of mice harboring a point mutation of the Atp1a3 gene (mouse homolog of the human ATP1A3 gene) that results in a loss of function of the α3 subunit. The Atp1a3 mutant mice showed hyperactivity, spatial learning and memory deficits, and increased locomotion induced by methamphetamine. However, the full spectrum of the motor phenotype has not been characterized in the mutant mice and it is not known whether triggers such as restraint stress affect the motor phenotype. Here, we characterized the motor phenotype in normal heterozygous Atp1a3 mutant mice and heterozygous Atp1a3 mutant mice that have been exposed to a restraint stress. We found that this type of trigger induced significant deficits in motor coordination and balance in the mutant mice, characteristic of other genotypic dystonia mouse models. Furthermore, stressed mutant mice also had a decreased thermal sensitivity and alterations in monoamine metabolism. These results suggest that the Atp1a3 mutant mouse models several characteristics of RDP and further analysis of this mouse model will provide great insight into pathogenesis of RDP.


Disease Models & Mechanisms | 2010

Chemical enhancement of torsinA function in cell and animal models of torsion dystonia

Songsong Cao; Jeffrey W. Hewett; Fumiaki Yokoi; Jun Lu; Amber Clark Buckley; Alexander J. Burdette; Pan Chen; Flávia C. Nery; Yuqing Li; Xandra O. Breakefield; Guy A. Caldwell; Kim A. Caldwell

SUMMARY Movement disorders represent a significant societal burden for which therapeutic options are limited and focused on treating disease symptomality. Early-onset torsion dystonia (EOTD) is one such disorder characterized by sustained and involuntary muscle contractions that frequently cause repetitive movements or abnormal postures. Transmitted in an autosomal dominant manner with reduced penetrance, EOTD is caused in most cases by the deletion of a glutamic acid (ΔE) in the DYT1 (also known as TOR1A) gene product, torsinA. Although some patients respond well to anticholingerics, therapy is primarily limited to either neurosurgery or chemodenervation. As mutant torsinA (ΔE) expression results in decreased torsinA function, therapeutic strategies directed toward enhancement of wild-type (WT) torsinA activity in patients who are heterozygous for mutant DYT1 may restore normal cellular functionality. Here, we report results from the first-ever screen for candidate small molecule therapeutics for EOTD, using multiple activity-based readouts for torsinA function in Caenorhabditis elegans, subsequent validation in human DYT1 patient fibroblasts, and behavioral rescue in a mouse model of DYT1 dystonia. We exploited the nematode to rapidly discern chemical effectors of torsinA and identified two classes of antibiotics, quinolones and aminopenicillins, which enhance WT torsinA activity in two separate in vivo assays. Representative molecules were assayed in EOTD patient fibroblasts for improvements in torsinA-dependent secretory function, which was improved significantly by ampicillin. Furthermore, a behavioral defect associated with an EOTD mouse knock-in model was also rescued following administration of ampicillin. These combined data indicate that specific small molecules that enhance torsinA activity represent a promising new approach toward therapeutic development for EOTD, and potentially for other diseases involving the processing of mutant proteins.


PLOS ONE | 2011

Altered dendritic morphology of Purkinje cells in Dyt1 ΔGAG knock-in and purkinje cell-specific Dyt1 conditional knockout mice.

Lin Zhang; Fumiaki Yokoi; Yuan-Hu Jin; Mark P. DeAndrade; Kenji Hashimoto; David G. Standaert; Yuqing Li

Background DYT1 early-onset generalized dystonia is a neurological movement disorder characterized by involuntary muscle contractions. It is caused by a trinucleotide deletion of a GAG (ΔGAG) in the DYT1 (TOR1A) gene encoding torsinA; the mouse homolog of this gene is Dyt1 (Tor1a). Although structural and functional alterations in the cerebellum have been reported in DYT1 dystonia, neuronal morphology has not been examined in vivo. Methodology/Principal Findings In this study, we examined the morphology of the cerebellum in Dyt1 ΔGAG knock-in (KI) mice. Golgi staining of the cerebellum revealed a reduction in the length of primary dendrites and a decrease in the number of spines on the distal dendrites of Purkinje cells. To determine if this phenomenon was cell autonomous and mediated by a loss of torsinA function in Purkinje cells, we created a knockout of the Dyt1 gene only in Purkinje cells of mice. We found the Purkinje-cell specific Dyt1 conditional knockout (Dyt1 pKO) mice have similar alterations in Purkinje cell morphology, with shortened primary dendrites and decreased spines on the distal dendrites. Conclusion/Significance These results suggest that the torsinA is important for the proper development of the cerebellum and a loss of this function in the Purkinje cells results in an alteration in dendritic structure.


Behavioural Brain Research | 2012

An anticholinergic reverses motor control and corticostriatal LTD deficits in Dyt1 ΔGAG knock-in mice.

Mai T. Dang; Fumiaki Yokoi; Chad C. Cheetham; Jun Lu; Viet Vo; David M. Lovinger; Yuqing Li

DYT1 early-onset generalized torsion dystonia is an inherited movement disorder associated with mutations in DYT1 that codes for torsinA protein. The most common mutation seen in this gene is a trinucleotide deletion of GAG. We previously reported a motor control deficit on a beam-walking task in our Dyt1 ΔGAG knock-in heterozygous mice. In this report we show the reversal of this motor deficit with the anticholinergic trihexyphenidyl (THP), a drug commonly used to treat movement problems in dystonia patients. THP also restored the reduced corticostriatal long-term depression (LTD) observed in these mice. Corticostriatal LTD has long been known to be dependent on D2 receptor activation. In this mouse model, striatal D2 receptors were expressed at lower quantities in comparison to wild-type mice. Furthermore, the mice were also partially resistant to FPL64176, an agonist of L-type calcium channels that have been previously reported to cause severe dystonic-like symptoms in wild-type mice. Our findings collectively suggest that altered communication between cholinergic interneurons and medium spiny neurons is responsible for the LTD deficit and that this synaptic plasticity modification may be involved in the striatal motor control abnormalities in our mouse model of DYT1 dystonia.


Neurobiology of Disease | 2012

Cholinergic dysregulation produced by selective inactivation of the dystonia-associated protein torsinA.

Giuseppe Sciamanna; Robert H. Hollis; Chelsea L. Ball; Giuseppina Martella; Annalisa Tassone; Andrea Marshall; Dee S. Parsons; Xinru Li; Fumiaki Yokoi; Lin Zhang; Yuqing Li; Antonio Pisani; David G. Standaert

DYT1 dystonia, a common and severe primary dystonia, is caused by a 3-bp deletion in TOR1A which encodes torsinA, a protein found in the endoplasmic reticulum. Several cellular functions are altered by the mutant protein, but at a systems level the link between these and the symptoms of the disease is unclear. The most effective known therapy for DYT1 dystonia is the use of anticholinergic drugs. Previous studies have revealed that in mice, transgenic expression of human mutant torsinA under a non-selective promoter leads to abnormal function of striatal cholinergic neurons. To investigate what pathological role torsinA plays in cholinergic neurons, we created a mouse model in which the Dyt1 gene, the mouse homolog of TOR1A, is selectively deleted in cholinergic neurons (ChKO animals). These animals do not have overt dystonia, but do have subtle motor abnormalities. There is no change in the number or size of striatal cholinergic cells or striatal acetylcholine content, uptake, synthesis, or release in ChKO mice. There are, however, striking functional abnormalities of striatal cholinergic cells, with paradoxical excitation in response to D2 receptor activation and loss of muscarinic M2/M4 receptor inhibitory function. These effects are specific for cholinergic interneurons, as recordings from nigral dopaminergic neurons revealed normal responses. Amphetamine stimulated dopamine release was also unaltered. These results demonstrate a cell-autonomous effect of Dyt1 deletion on striatal cholinergic function. Therapies directed at modifying the function of cholinergic neurons may prove useful in the treatment of the human disorder.


PLOS ONE | 2011

Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice

Fumiaki Yokoi; Mai T. Dang; Jianyong Li; David G. Standaert; Yuqing Li

DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit.


Neuroscience Research | 2009

Increased c-fos expression in the central nucleus of the amygdala and enhancement of cued fear memory in Dyt1 ΔGAG knock-in mice

Fumiaki Yokoi; Mai T. Dang; Courtney A. Miller; Andrea Marshall; Susan L. Campbell; J. David Sweatt; Yuqing Li

DYT1 dystonia is caused by a trinucleotide deletion of GAG (DeltaGAG) in DYT1, which codes for torsinA. A previous epidemiologic study suggested an association of DYT1 DeltaGAG mutation with early-onset recurrent major depression. However, another study reported no significant association with depression, but instead showed an association with anxiety and dystonia. In this study, we analyzed these related behaviors in Dyt1 DeltaGAG heterozygous knock-in mice. The knock-in mice showed a subtle anxiety-like behavior but did not show depression-like behaviors. The mutant mice also displayed normal sensorimotor gating function in a prepulse inhibition test. While normal hippocampus-dependent contextual fear memory and hippocampal CA1 long-term potentiation (LTP) were observed, the knock-in mice exhibited an enhancement in the formation of cued fear memories. Anatomical analysis indicated that the number of c-fos positive cells was significantly increased while the size of the central nucleus of the amygdala (CE) was significantly reduced in the knock-in mice. These results suggest that the Dyt1 DeltaGAG mutation increased the activity of the CE and enhanced the acquisition of the cued fear memory.


Journal of Biochemistry | 2010

Earlier onset of motor deficits in mice with double mutations in Dyt1 and Sgce

Fumiaki Yokoi; Guang Yang; JinDong Li; Mark P. DeAndrade; Tong Zhou; Yuqing Li

DYT1 early-onset generalized torsion dystonia is an inherited movement disorder caused by mutations in DYT1 coding for torsinA with ∼30% penetrance. Most of the DYT1 dystonia patients exhibit symptoms during childhood and adolescence. On the other hand, DYT1 mutation carriers without symptoms during these periods mostly do not exhibit symptoms later in their life. Little is known about what controls the timing of the onset, a critical issue for DYT1 mutation carriers. DYT11 myoclonus-dystonia is caused by mutations in SGCE coding for ε-sarcoglycan. Two dystonia patients from a single family with double mutations in DYT1 and SGCE exhibited more severe symptoms. A recent study suggested that torsinA contributes to the quality control of ε-sarcoglycan. Here, we derived mice carrying mutations in both Dyt1 and Sgce and found that these double mutant mice showed earlier onset of motor deficits in beam-walking test. A novel monoclonal antibody against mouse ε-sarcoglycan was developed by using Sgce knock-out mice to avoid the immune tolerance. Western blot analysis suggested that functional deficits of torsinA and ε-sarcoglycan may independently cause motor deficits. Examining additional mutations in other dystonia genes may be beneficial to predict the onset in DYT1 mutation carriers.

Collaboration


Dive into the Fumiaki Yokoi's collaboration.

Top Co-Authors

Avatar

Yuqing Li

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad C. Cheetham

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

David G. Standaert

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

J. David Sweatt

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shinichi Mitsui

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan L. Campbell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Tong Zhou

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andrea Marshall

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge