Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumihiko Maekawa is active.

Publication


Featured researches published by Fumihiko Maekawa.


Neuroscience | 2003

POTENTIAL ROLE OF GLIAL CELL LINE-DERIVED NEUROTROPHIC FACTOR RECEPTORS IN MULLER GLIAL CELLS DURING LIGHT- INDUCED RETINAL DEGENERATION

Chikako Harada; T Harada; Hun-Meng A. Quah; Fumihiko Maekawa; Kazuhiko Yoshida; Shigeaki Ohno; Keiji Wada; Luis F. Parada; Kohichi Tanaka

Glial cell line-derived neurotrophic factor (GDNF), neurturin (NTN) and their receptors (GFRalpha1, GFRalpha2 and Ret) play an important role in the survival of neurons in the central and peripheral nervous system. For example, GDNF as well as other trophic factors promotes photoreceptor survival during retinal degeneration. Recent studies have proposed that part of neurotophic rescue of photoreceptors may be indirect, mediated by interaction of the neurotrophic factors with other cell types, that in turn release secondary factors that act directly on photoreceptors. In the present study, we examined the GDNF receptor expression in control and light-damaged retina, and found that GFRalpha2 protein is upregulated in retina-specific Müller glial cells during photoreceptor degeneration. We also examined the effect of GDNF or NTN on cultured Müller cells. Exogenous GDNF increased brain-derived neurotrophic factor, basic fibroblast growth factor and GDNF, but not NTN mRNA production. On the other hand, NTN increased NTN, but not GDNF mRNA production in cultured Müller cells. These observations suggest that GDNF, NTN and their receptors are involved in the regulation of trophic factor production in retinal glial cells, and that functional glia-neuron network may utilize GDNF family for the protection of neural cells during retinal degeneration.


Journal of Neuroendocrinology | 2010

Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus.

M. Toriya; Fumihiko Maekawa; Yuko Maejima; Tatsushi Onaka; Ken Fujiwara; T. Nakagawa; Masanori Nakata; Toshihiko Yada

Brain‐derived neurotrophic factor (BDNF) has been implicated in learning, depression and energy metabolism. However, the neuronal mechanisms underlying the effects of BDNF on energy metabolism remain unclear. The present study aimed to elucidate the neuronal pathways by which BDNF controls feeding behaviour and energy balance. Using an osmotic mini‐pump, BDNF or control artificial cerebrospinal fluid was infused i.c.v. at the lateral ventricle or into the paraventricular nucleus of the hypothalamus (PVN) for 12 days. Intracerebroventricular BDNF up‐regulated mRNA expression of corticotrophin‐releasing hormone (CRH) and urocortin in the PVN. TrkB, the receptor for BDNF, was expressed in the PVN neurones, including those containing CRH. Both i.c.v. and intra‐PVN‐administered BDNF decreased food intake and body weight. These effects of BDNF on food intake and body weight were counteracted by the co‐administration of α‐helical‐CRH, an antagonist for the CRH and urocortin receptors CRH‐R1/R2, and partly attenuated by a selective antagonist for CRH‐R2 but not CRH‐R1. Intracerebroventricular BDNF also decreased the subcutaneous and visceral fat mass, adipocyte size and serum triglyceride levels, which were all attenuated by α‐helical‐CRH. Furthermore, BDNF decreased the respiratory quotient and raised rectal temperature, which were counteracted by α‐helical‐CRH. These results indicate that the CRH‐urocortin‐CRH‐R2 pathway in the PVN and connected areas mediates the long‐term effects of BDNF to depress feeding and promote lipolysis.


Cell and Tissue Research | 2007

Expression of retinaldehyde dehydrogenase (RALDH)2 and RALDH3 but not RALDH1 in the developing anterior pituitary glands of rats

Ken Fujiwara; Fumihiko Maekawa; Motoshi Kikuchi; Shu Takigami; Toshihiko Yada; Takashi Yashiro

Retinoic acid (RA) plays an important role in cell growth and tissue development and is also a regulating factor of pituitary function. However, whether RA is generated in the pituitary gland and plays a role as a paracrine and/or autocrine hormone is generally unknown. RA is synthesized from retinoids through oxidation processes. Dehydrogenases catalyzing the oxidation of retinal to RA are members of the retinaldehyde dehydrogenase (RALDH) family. In this study, we examined the expression of RALDH1, RALDH2, and RALDH3 mRNA in the rat embryonic pituitary gland. By in situ hybridization with digoxigenin-labeled cRNA probes, we detected mRNA expression for RALDH2 and RALDH3, but not RALDH1. The expression of RALDH2 and RALDH3 was located in Rathke’s pouch at embryonic day 12.5 (E12.5) and subsequently in the developing anterior pituitary gland. We also used quantitative real-time polymerase chain reaction to analyze RALDH2 and RALDH3 mRNA expression levels during the development of the pituitary gland. We found that pituitary RALDH2 and RALDH3 mRNA levels were high at E17.5 and decreased markedly after birth. Our study is the first to show that RALDH2 and RALDH3, but not RALDH1, are expressed in the embryonic anterior pituitary gland of the rat.


Neurotoxicology | 2013

Inhibition of neurite outgrowth and alteration of cytoskeletal gene expression by sodium arsenite.

Kyaw Htet Aung; Ryohei Kurihara; Shizuka Nakashima; Fumihiko Maekawa; Keiko Nohara; Tetsuya Kobayashi; Shinji Tsukahara

Arsenic compounds that are often found in drinking water increase the risk of developmental brain disorders. In this study, we performed live imaging analyses of Neuro-2a cells expressing SCAT3, a caspase-3 cleavage peptide sequence linking two fluorescent proteins; enhanced cyan fluorescence protein (ECFP) and Venus, to determine whether sodium arsenite (NaAsO(2); 0, 1, 5, or 10 μM) affects both neurite outgrowth and/or induces apoptosis with the same doses and in the same cell cultures. We observed that the area ratio of neurite to cell body in SCAT3-expressing cells was significantly reduced by 5 and 10 μM NaAsO(2), but not by 1 μM, although the emission ratio of ECFP to Venus, an endpoint of caspase-3 activity, was not changed. However, cytological assay using apoptotic and necrotic markers resulted in that apoptosis, but not necrosis, was significantly induced in Neuro-2a cells when NaAsO(2) exposure continued after the significant effects of NaAsO(2) on neurite outgrowth were found by live imaging. These results suggested that neurite outgrowth was suppressed by NaAsO(2) prior to NaAsO(2)-induced apoptosis. Next, we examined the effects of NaAsO(2) on cytoskeletal gene expression in Neuro-2a cells. NaAsO(2) increased the mRNA levels of the light and medium subunits of neurofilament and decreased the mRNA levels of tau and tubulin in a dose-dependent manner; no significant effect was found in the mRNA levels of the heavy subunit of neurofilament, microtubule-associated protein 2, or actin. The changes in cytoskeletal gene expression are likely responsible for the inhibitory effects of NaAsO(2) on neurite outgrowth.


Toxicological Sciences | 2012

Late-onset Increases in Oxidative Stress and Other Tumorigenic Activities and Tumors With a Ha-ras Mutation in the Liver of Adult Male C3H Mice Gestationally Exposed to Arsenic

Keiko Nohara; Yukiyo Tateishi; Takehiro Suzuki; Kazuyuki Okamura; Hikari Murai; Shota Takumi; Fumihiko Maekawa; Noriko Nishimura; Masuko Kobori; Takaaki Ito

Tumorigenesis is a complex process involving genetic, epigenetic, and metabolic alterations. Gestational arsenic exposure has been shown to increase hepatic tumors in adult male offspring of C3H mice, which spontaneously develop hepatic tumors often harboring activating Ha-ras mutation. We explored tumor-promoting changes by gestational arsenic exposure with a focus on Ha-ras mutation and gene expression changes. The results of this study demonstrated that gestational arsenic exposure particularly increased hepatic tumors with a C61A Ha-ras mutation. Real-time PCR analyses on the adult normal livers showed that two genes (Creld2, Slc25a30), whose expression are induced by endoplasmic reticulum stress and cellular oxidative stress, respectively, were significantly upregulated and two genes (Fabp4, Ell3), whose products are involved in lipid efflux and apoptosis, respectively, were significantly downregulated more than twofold by gestational arsenic exposure compared with control mice. The expression changes in the four genes were shown to be late-onset events and to some extent to be associated with corresponding histone modifications, and not with DNA methylation changes. The gene expression changes suggested alterations in lipid metabolism and associated oxidative stress augmentation. Consistently, expression of an oxidative-stress-inducible gene heme oxygenase-1 (HO-1) was upregulated in the livers of the arsenic group. We also found increased expression of retrotransposon L1 mRNA in the tumor-bearing livers of the arsenic group in comparison with control mice. These results suggested that gestational arsenic exposure induces tumor-augmenting changes, including oxidative stress and L1 activation, in a late-onset manner, which would particularly promote tumorigenic expansion of cells with a C61A Ha-ras mutation.


Frontiers in Neuroscience | 2014

The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes

Fumihiko Maekawa; Shinji Tsukahara; Takaharu Kawashima; Keiko Nohara; Hiroko Ohki-Hamazaki

From a classical viewpoint, sex-specific behavior and physiological functions as well as the brain structures of mammals such as rats and mice, have been thought to be influenced by perinatal sex steroids secreted by the gonads. Sex steroids have also been thought to affect the differentiation of the sex-typical behavior of a few members of the avian order Galliformes, including the Japanese quail and chickens, during their development in ovo. However, recent mammalian studies that focused on the artificial shuffling or knockout of the sex-determining gene, Sry, have revealed that sex chromosomal effects may be associated with particular types of sex-linked differences such as aggression levels, social interaction, and autoimmune diseases, independently of sex steroid-mediated effects. In addition, studies on naturally occurring, rare phenomena such as gynandromorphic birds and experimentally constructed chimeras in which the composition of sex chromosomes in the brain differs from that in the other parts of the body, indicated that sex chromosomes play certain direct roles in the sex-specific differentiation of the gonads and the brain. In this article, we review the relative contributions of sex steroids and sex chromosomes in the determination of brain functions related to sexual behavior and reproductive physiology in mammals and birds.


Neurotoxicology | 2013

Effects of sodium arsenite on neurite outgrowth and glutamate AMPA receptor expression in mouse cortical neurons.

Fumihiko Maekawa; Takashi Tsuboi; Manami Oya; Kyaw Htet Aung; Shinji Tsukahara; Luc Pellerin; Keiko Nohara

There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2 μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2 μM NaAsO2, whereas 0.5 μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1 μM and 2 μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1 μM and 2 μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1 μM and 2 μM NaAsO2 but to be increased at the concentration of 0.5 μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.


Journal of Neuroendocrinology | 2006

Young adult-specific hyperphagia in diabetic goto-kakizaki rats is associated with leptin resistance and elevation of neuropeptide Y mRNA in the arcuate nucleus

Fumihiko Maekawa; Ken Fujiwara; Daisuke Kohno; Motoki Kuramochi; Hideharu Kurita; Toshihiko Yada

The present study aimed to examine whether hyperphagia, which is frequently observed in type 1 diabetic patients and model animals, also occurs in type 2 diabetic Goto‐Kakizaki (GK) rats and, if so, to explore underlying abnormalities in the hypothalamus. GK rats at postnatal weeks 6–12, compared to control Wistar rats, exhibited hyperphagia, hyperglycaemia, hyperleptinemia and increased visceral fat accumulation, whereas body weight was unaltered. The ability of leptin to suppress feeding was reduced in GK rats compared to Wistar rats of these ages. In GK rats, leptin‐induced phosphorylation of signal transducer and activator of transcription 3 was significantly reduced in the cells of the hypothalamic arcuate nucleus (ARC), but not of the ventromedial hypothalamus, whereas the mRNA level of functional leptin receptor was unaltered. By real‐time polymerase chain reaction and in situ hybridisation, mRNA levels of neuropeptide Y, but not pro‐opiomelanocortin and galanin‐like peptide, were significantly increased in the ARC of GK rats at 11 weeks, but not 26 weeks. Following i.c.v. injection of a NPY Y1 antagonist, 1229U91, the amount of food intake in GK rats was indistinguishable from that in Wistar rats, thus eliminating the hyperphagia of GK rats. These results demonstrate that young adult GK rats display hyperphagia in association with leptin resistance and increased NPY mRNA level in the ARC.


Development Growth & Differentiation | 2013

Neural basis of imprinting behavior in chicks

Tomoharu Nakamori; Fumihiko Maekawa; Katsushige Sato; Kohichi Tanaka; Hiroko Ohki-Hamazaki

Newly hatched chicks memorize the characteristics of the first moving object they encounter, and subsequently show a preference for it. This “imprinting” behavior is an example of infant learning and is elicited by visual and/or auditory cues. Visual information of imprinting stimuli in chicks is first processed in the visual Wulst (VW), a telencephalic area corresponding to the mammalian visual cortex, congregates in the core region of the hyperpallium densocellulare (HDCo) cells, and transmitted to the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. The imprinting memory is stored in the IMM, and activities of IMM neurons are altered by imprinting. Imprinting also induces functional and structural plastic changes of neurons in the circuit that links the VW and the IMM. Of these neurons, the activity of the HDCo cells is strongly influenced by imprinting. Expression and modulation of NR2B subunit‐containing N‐methyl‐D‐aspartate (NMDA) receptors in the HDCo cells are crucial for plastic changes in this circuit as well as the process of visual imprinting. Thus, elucidation of cellular and molecular mechanisms underlying the plastic changes that occurred in the HDCo cells may provide useful knowledge about infant learning.


Frontiers in Neuroscience | 2016

In utero and Lactational Exposure to Acetamiprid Induces Abnormalities in Socio-Sexual and Anxiety-Related Behaviors of Male Mice

Kazuhiro Sano; Tomohiko Isobe; Jiaxin Yang; Tin-Tin Win-Shwe; Mitsuha Yoshikane; Shoji F. Nakayama; Takaharu Kawashima; Go Suzuki; Shunji Hashimoto; Keiko Nohara; Chiharu Tohyama; Fumihiko Maekawa

Neonicotinoids, a widely used group of pesticides designed to selectively bind to insect nicotinic acetylcholine receptors, were considered relatively safe for mammalian species. However, they have been found to activate vertebrate nicotinic acetylcholine receptors and could be toxic to the mammalian brain. In the present study, we evaluated the developmental neurotoxicity of acetamiprid (ACE), one of the most widely used neonicotinoids, in C57BL/6J mice whose mothers were administered ACE via gavage at doses of either 0 mg/kg (control group), 1.0 mg/kg (low-dose group), or 10.0 mg/kg (high-dose group) from gestational day 6 to lactation day 21. The results of a battery of behavior tests for socio-sexual and anxiety-related behaviors, the numbers of vasopressin-immunoreactive cells in the paraventricular nucleus of the hypothalamus, and testosterone levels were used as endpoints. In addition, behavioral flexibility in mice was assessed in a group-housed environment using the IntelliCage, a fully automated mouse behavioral analysis system. In adult male mice exposed to ACE at both low and high doses, a significant reduction of anxiety level was found in the light-dark transition test. Males in the low-dose group also showed a significant increase in sexual and aggressive behaviors. In contrast, neither the anxiety levels nor the sexual behaviors of females were altered. No reductions in the testosterone level, the number of vasopressin-immunoreactive cells, or behavioral flexibility were detected in either sex. These results suggest the possibility that in utero and lactational ACE exposure interferes with the development of the neural circuits required for executing socio-sexual and anxiety-related behaviors in male mice specifically.

Collaboration


Dive into the Fumihiko Maekawa's collaboration.

Top Co-Authors

Avatar

Toshihiko Yada

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Keiko Nohara

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Fujiwara

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohichi Tanaka

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Maejima

Fukushima Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge