Fumihiko Ogata
Kindai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fumihiko Ogata.
Journal of Hazardous Materials | 2010
Naohito Kawasaki; Fumihiko Ogata; Hisato Tominaga
The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300-1150 degrees C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into gamma- and alpha-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300-700 degrees C and decreases above a calcining temperature of 800 degrees C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4-6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500-840 microm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.
Toxicological & Environmental Chemistry | 2011
Fumihiko Ogata; Hisato Tominaga; Hitoshi Yabutani; Atsushi Taga; Naohito Kawasaki
The effectiveness of gibbsite (GB), an amorphous aluminum oxide, for the recovery of Mo(VI) from eluates of fly ash of two coal-fired thermal power stations and of roof tile waste was investigated. Upon the qualitative analysis of an eluate of fly ash, 16 elements were detected. Greater amounts of these elements were eluted under acidic conditions (pH 2) than from the neutral or basic eluate of fly ash. GB was used for the adsorption of Mo(VI). Equilibrium adsorption was reached within 1 min. Optimal solution acidity for the adsorption of Mo(VI) onto GB400 (calcined at 400°C) was pH 2. The main adsorption mechanism was ion exchange with a number of hydroxyl groups of GB400. For repeated ad- and desorption of Mo(VI), GB400 could be used at least four times and the recovery percentage of Mo(VI) with sodium hydroxide solution as eluent surpassed 90%. Our results showed that GB400 was very effective for the recovery of Mo(VI) from fly ash.
Experimental Eye Research | 2017
Noriaki Nagai; Fumihiko Ogata; Hiroko Otake; Naohito Kawasaki; Yosuke Nakazawa; Kazutaka Kanai; Norio Okamoto; Yoshikazu Shimomura
Abstract We prepared magnesium hydroxide (MH) nanoparticles by a bead mill method, and investigated whether the co‐instillation of MH nanoparticles improves the low transcorneal penetration of water‐soluble drugs, such as the anti‐glaucoma eye drug timolol maleate (TM). MH particle size was decreased by the bead mill treatment to a mean particle size of 71 nm. In addition, the MH nanoparticles were highly stable. Next, we demonstrated the effect of MH nanoparticles on the corneal surface. MH shows only slight solubility in lacrimal fluid, and the instillation of MH nanoparticles for 14 days did not affect the behavior (balance of secretion and excretion) of the lacrimal fluid in rabbit corneas. Moreover, there was no observable corneal toxicity of MH nanoparticles, and treatment with MH nanoparticles enhanced the intercellular space ratio in the eyes of rats. MH alone did not permeate into the cornea; however, the co‐instillation of MH nanoparticles and dissolved TM (nMTFC) enhanced the corneal penetration of TM. In addition, the intraocular pressure (IOP)‐reducing effect of nMTFC was significantly higher than those of the TM solution or the co‐instillation of MH microparticles and TM. In conclusion, we found that MH nanoparticles enhance the corneal penetration of dissolved TM with no observable corneal stimulation or obstruction of the nasolacrimal duct by the MH nanoparticles. It is possible that the co‐instillation of MH nanoparticles may provide a useful way to improve the bioavailability of water‐soluble drugs in the ophthalmic field. These findings provide significant information that can be used to design further studies aimed at developing anti‐glaucoma eye drugs. HighlightsThe corneal toxicity was not observed by the instillation of magnesium hydroxide (MH) nanoparticles (71 nm).The co‐instillation of MH nanoparticles and dissolved timolol (nMTFC) enhanced the corneal penetration of timolol.The intraocular pressure‐reducing effect of nMTFC was significantly higher than those of the TM solution.
Chemical & Pharmaceutical Bulletin | 2015
Fumihiko Ogata; Naohito Kawasaki
Morphological and chemical evaluation of Fe-Mg hydrotalcite (Fe-HT) was performed using scanning electron microscopy, X-ray diffraction analysis, and electron microanalysis for application as an adsorbent for water treatment. The adsorption of arsenic III (As(III)) on Fe-HT was evaluated via examination of the effect of the contact time and analysis of the adsorption isotherm. The amount of As(III) adsorbed increased slightly with increasing temperature. The results of the adsorption isotherm studies suggested that As(III) adsorption can be well described by both the Freundlich and Langmuir equations. The adsorption of As(III) on Fe-HT reached equilibrium within 24 h, and the adsorption kinetic data fit the pseudo-second-order kinetic model better than the pseudo-first-order model. The amount of As(III) present on the surface of Fe-HT increased after As(III) adsorption, and the crystalline structure of Fe-HT was maintained after adsorption of As(III). The (003) and (006) peaks in the X-ray diffraction patterns were attributed to basal reflections, and these peaks shifted from respective 2θ values of 10.86 and 21.94° to 11.12 and 22.52°, indicating exchange of As(III) with chloride ions in Fe-HT with consequent narrowing of the inter-layer spacing. Collectively, these results suggest that Fe-HT is prospectively useful for the adsorption of As(III) from aqueous solutions.
Toxicological & Environmental Chemistry | 2013
Fumihiko Ogata; Yuka Iwata; Naohito Kawasaki
Gibbsite calcined at 400°C (GB400) was prepared, and its ability to adsorb rhodium(III) was investigated. Optimal pH, effect of contact time, temperature, adsorption isotherms, and recovery percentage were evaluated. The optimal pH was 6.3. The adsorption equilibrium was achieved within 24 h. The adsorption rate was found to be of pseudo-first order. The experimental data were fitted to both the Freundlich (r = 0.90–0.93) and Langmuir (r = 0.94–0.96) equations. The amount of rhodium(III) adsorbed decreased with increasing temperature. Rhodium(III) being adsorbed from phosphate or sulfate plating solution was recovered using hydrochloric acid and sodium hydroxide solutions at 1, 10, and 100 mmol L−1.
Toxicological & Environmental Chemistry | 2012
Fumihiko Ogata; Hisato Tominaga; Hitoshi Yabutani; Atsushi Taga; Naohito Kawasaki
In this study, we prepared a new adsorbent and evaluated its ability to adsorb Mo(VI). Gibbsite was granulated with colloidal alumina or colloidal silica. The amount of Mo(VI) adsorbed onto granular gibbsite with a binder, effect of contact time and pH on the adsorption of Mo(VI), and column experiments were investigated. The amount of Mo(VI) adsorbed was greater in the order of ST12 (colloidal silica, 12%) < AS10 (colloidal alumina, 10%) < GB400 (calcined gibbsite at 400°C). Adsorption isotherms data were fitted to the Freundlich equation (correlation coefficient: 0.941–0.978), suggesting monomolecular adsorption on a heterogeneous surface. The amount of Mo(VI) adsorbed onto granular gibbsite with a binder was correlated with the amount of hydroxyl groups rather than the specific surface area. The adsorption rate data of Mo(VI) were fitted to the pseudo-second-order equation, which indicated that the rate limiting step may be chemisorption. Recovery of Mo(VI) using AS10 packed in a column was 95.6%. After five adsorption and desorption steps, adsorption and desorption ability of Mo(VI) using AS10 was unchanged. These results suggest that AS10 packed in a column could be useful for the recovery of Mo(VI).
Water Science and Technology | 2017
Fumihiko Ogata; Erimi Ueta; Megumu Toda; Masashi Otani; Naohito Kawasaki
Different molar ratios of a Ni/Co binary hydroxide (NiCo82, NiCo91, and Ni100) were prepared and calcined at 270 °C (NiCo82-270, NiCo91-270, and Ni100-270). The properties of the adsorbents and the amount of adsorbed phosphate ions were evaluated. The adsorbents calcined at 270 °C had a nickel oxide structure. The amount of adsorbed phosphate ions, the amount of hydroxyl groups, and the specific surface area of the calcined adsorbents at 270 °C were greater than those of the uncalcined adsorbents. The amount of adsorbed phosphate ions was related to the amount of hydroxyl groups and the specific surface area; the correlation coefficients were 0.966 and 0.953, respectively. The adsorption isotherm data for NiCo91 and NiCo91-270 were fit to both the Freundlich and Langmuir equations. The amount of adsorbed phosphate ions increased with increasing temperature. The experimental data fit the pseudo-second-order model better than the pseudo-first-order model. A neutral pH was optimal for phosphate ion adsorption. In addition, the phosphate ions that were adsorbed onto NiCo91-270 could be recovered using sodium hydroxide, and the adsorbent was useful for the repetitive adsorption/desorption of phosphate ions. Collectively, these results suggest that NiCo91-270 is prospectively useful for the adsorption of phosphate ions from aqueous solutions.
Chemical & Pharmaceutical Bulletin | 2017
Fumihiko Ogata; Noriaki Nagai; Naohito Kawasaki
In this study, the adsorption capability of cationic dyes, which were methylene blue and crystal violet, by poly-γ-glutamic acid (PGA) in a single or binary solution system was investigated. The effect of the molecular weight of PGA, initial dye concentration, solution pH, and temperature on the adsorption of dyes was evaluated. The adsorption mechanism of dyes onto PGA was the interaction between -COOH group on the PGA surface and the polarity groups of dyes. These results indicated that PGA is useful for removal of dyes and cationic organic compounds from a single or binary solution system.
Biological & Pharmaceutical Bulletin | 2017
Noriaki Nagai; Fumihiko Ogata; Saori Deguchi; Akina Ueno; Naohito Kawasaki; Yoshimasa Ito
We attempted to design a combination ointment containing solid tranilast nanoparticles and dissolved sericin as a wound-healing drug (TS-combination ointment), and evaluated its usefulness as therapy for wound-healing deficits in streptozotocin-induced diabetic rat (STZ rat) using kinetic analyses as an index. Solid tranilast nanoparticles were prepared by bead mill methods with low-substituted methylcellulose; the mean particle size of the tranilast nanoparticles was 70 nm. The ointment was designed to contain the tranilast nanoparticles plus sericin powder and/or Carbopol® 934. Skin wound healing in STZ rats begins significantly later than in normal rats. Although the skin wound healing rate in STZ rats treated with an ointment containing tranilast nanoparticles was lower than in STZ rats treated with vehicle, the ointment was effective in reducing redness. An ointment containing sericin enhanced the skin-healing rate, but the preventive effect on redness was weak. On the other hand, the combination of tranilast and sericin increased both the skin healing rate and reduction in redness. In conclusion, we have adapted kinetic analyses to skin wound healing in rats, and found these analyses to be useful as an index of wound healing ability by a wound-healing drug. In addition, we show that treatment with the TS-combination ointment enhances the skin wound healing rate and reduces redness. These findings provide information significant to the search for new wound-healing therapies and for the design of wound-healing drugs.
Biological & Pharmaceutical Bulletin | 2015
Noriaki Nagai; Fumihiko Ogata; Naohito Kawasaki; Yoshimasa Ito; Yoshinori Funakami; Norio Okamoto; Yoshikazu Shimomura
Hypercalcemia is often observed in postmenopausal women as well as in patients with primary hyperparathyroidism or malignant tumors. In this study, we investigated the relationship between calcium ion (Ca(2+)) levels in lacrimal fluid and the rate of corneal wound healing in hypercalcemia using ovariectomized (OVX) rat debrided corneal epithelium. We also determined the effects of Ca(2+) levels on cell adhesion, proliferation and viability in a human cornea epithelial cell line (HCE-T). The calcium content in bones of OVX rats decreased after ovariectomy. Moreover, the Ca(2+) content in the blood of OVX rats was increased 1 month after ovariectomy, and decreased. The Ca(2+) content in the lacrimal fluid of OVX rats was also increased after ovariectomy, and then decreased similarly as in blood. Corneal wound healing in OVX rats was delayed in comparison with Sham rats (control rats), and a close relationship was observed between the Ca(2+) levels in lacrimal fluid and the rate of corneal wound healing in Sham and OVX rats (y=-0.7863x+8.785, R=0.78, n=25). In addition, an enhancement in Ca(2+) levels caused a decrease in the viability in HCE-T cells. It is possible that enhanced Ca(2+) levels in lacrimal fluid may cause a decrease in the viability of corneal epithelial cells, resulting in a delay in corneal wound healing. These findings provide significant information that can be used to design further studies aimed at reducing corneal damage of patients with hypercalcemia.