Fumihiro Kato
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fumihiro Kato.
Virology | 2010
Shigeru Tajima; Reiko Nerome; Yoko Nukui; Fumihiro Kato; Tomohiko Takasaki; Ichiro Kurane
We previously reported that the Japanese encephalitis virus (JEV) strain Mie/41/2002 has weak pathogenicity compared with the laboratory strain Beijing-1. To identify the determinants of its growth nature and pathogenicity, we produced intertypic viruses, rJEV(EB1-M41), rJEV(nEB1-M41) and rJEV(cEB1-M41), which contained the entire, the N-terminal, and the C-terminal half, respectively, of the Beijing-1 E region in the Mie/41/2002 background. The growth of rJEV(EB1-M41) in mouse neuroblastoma N18 cells and virulence in mice were similar to those of Beijing-1. rJEV(nEB1-M41) propagated in N18 cells to the same extent as did Beijing-1. Furthermore, we produced mutant viruses with single amino acid substitutions in the N-terminal half of the Mie/41/2002 E region. A Ser-123-Arg mutation in the Mie/41/2002 E protein exhibited significantly increased growth rate in N18 cells and virulence in mice. These results indicate that the position 123 in the E protein is responsible for determining the growth properties and pathogenicity of JEV.
Viruses | 2016
Fumihiro Kato; Takayuki Hishiki
Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro.
Journal of General Virology | 2011
Yukie Yamaguchi; Yoko Nukui; Shigeru Tajima; Reiko Nerome; Fumihiro Kato; Haruo Watanabe; Tomohiko Takasaki; Ichiro Kurane
Our previous studies have shown that the Japanese encephalitis virus (JEV) strain Mie/40/2004 is the most virulent of the strains isolated by us in Japan from 2002 to 2004. Comparison of the amino acid sequence of Mie/40/2004 with those of low-virulence strains revealed that an isoleucine residue at position 3 of the Mie/40/2004 NS4A protein may increase viral pathogenicity. A recombinant virus with a single valine-to-isoleucine substitution (V3I) at position 3 in the low-virulence Mie/41/2002 background (rJEV-Mie41-NS4A(V3I)) exhibited increased virulence in mice compared with the Mie/41/2002 parent strain. The V3I mutation did not affect virus growth in several cell lines. These results demonstrate that the isoleucine at position 3 in the NS4A protein of Mie/40/2004 is responsible for its high virulence in vivo. This is the first report to show that an amino acid substitution in a flavivirus NS4A protein alters viral pathogenicity in mice.
Journal of General Virology | 2013
Fumihiro Kato; Yuki Ishida; Takahiro Kawagishi; Takeshi Kobayashi; Takayuki Hishiki; Tomoyuki Miura; Tatsuhiko Igarashi
To investigate the potential role of non-human primates (NHPs) in a dengue virus (DENV) epidemic, we conducted serological and genomic studies using plasma samples collected from 100 cynomolgus monkeys (Macaca fascicularis) in an animal breeding facility in the Philippines. An ELISA revealed 21 monkeys with a positive IgM reaction and 19 positive for IgG. Five of the monkeys were positive for both IgM and IgG. Of the 21 IgM-positive samples, a neutralization assay identified seven containing DENV-specific antibodies. We amplified the viral non-structural 1 (NS1) gene in two and the envelope (E) gene in one of these seven samples by RT-PCR. Phylogenetic analyses revealed that these DENV genes belonged to the epidemic DENV-2 family, not the sylvatic DENV family. These results suggest that NHPs may serve as a reservoir of epidemic DENV; therefore, the ecology of the urban DENV infection cycle should be investigated in these animals in detail.
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 1996
Fumihiro Kato; Yoshikazu Fujii; Kenji Kimura; Michi-hiko Mannami
Abstract Energy losses of 12.5–30 keV He + ions are measured at glancing-angle incidence on the (001) surface of SnTe. Position-dependent stopping powers of the surfaces for the ions are derived from the observed losses. It is shown that the stopping power is explained by the single collision of a neutral He atom with valence electrons outside the surface.
Journal of General Virology | 2016
Yuki Ishida; Mai Yoneda; Hiroyuki Otsuki; Yuji Watanabe; Fumihiro Kato; Kanako Matsuura; Minako Kikukawa; Shuzo Matsushita; Takayuki Hishiki; Tatsuhiko Igarashi; Tomoyuki Miura
Previously, we reported that a new genetically diverse CCR5 (R5) tropic simian/human immunodeficiency virus (SHIV-MK38) adapted to rhesus monkeys became more neutralization resistant to SHIV-infected plasma than did the parental SHIV-KS661 clone. Here, to clarify the significance of the neutralization-resistant phenotype of SHIV in a macaque model, we initially investigated the precise neutralization phenotype of the SHIVs, including SHIV-MK38 molecular clones, using SHIV-MK38-infected plasma, a pooled plasma of human immunodeficiency virus (HIV)-infected individuals, soluble CD4 and anti-HIV-1 neutralizing mAbs, the epitopes of which were known. The results show that SHIV-KS661 had tier 1 neutralization sensitivity, but monkey-adapted R5 tropic SHIV-MK38 acquired neutralization resistance similar to that of tier 2 or 3 as a clone virus. Sequence analysis of the env gene suggested that the neutralization-resistant phenotype of SHIV-MK38 was acquired by conformational changes in Env associated with the net charge and potential N-linked glycosylation sites. To examine the relationship between neutralization phenotype and stably persistent infection in monkeys, we performed in vivo rectal inoculation experiments using a SHIV-MK38 molecular clone. The results showed that one of three rhesus monkeys exhibited durable infection with a plasma viral load of 105 copies ml- 1 despite the high antibody responses that occurred in the host. Whilst further improvements are required in the development of a challenge virus, it will be useful to generate a neutralization-resistant R5 tropic molecular clone of the SHIV-89.6 lineage commonly used for vaccine development - a result that can be used to explore the foundation of AIDS pathogenesis.
Scientific Reports | 2017
Fumihiro Kato; Shigeru Tajima; Eri Nakayama; Yasuhiro Kawai; Satoshi Taniguchi; Ken-ichi Shibasaki; Masakatsu Taira; Takahiro Maeki; Chang Kweng Lim; Tomohiko Takasaki; Masayuki Saijo
An Asian/American lineage Zika virus (ZIKV) strain ZIKV/Hu/S36/Chiba/2016 formed 2 types in plaque size, large and small. Genomic analysis of the plaque-forming clones obtained from the isolate indicated that the clones forming small plaques commonly had an adenine nucleotide at position 796 (230Gln in the amino acid sequence), while clones forming large plaques had a guanine nucleotide (230Arg) at the same position, suggesting that this position was associated with the difference in plaque size. Growth kinetics of a large-plaque clone was faster than that of a small-plaque clone in Vero cells. Recombinant ZIKV G796A/rZIKV-MR766, which carries a missense G796A mutation, was produced using an infectious molecular clone of the ZIKV MR766 strain rZIKV-MR766/pMW119-CMVP. The plaque size of the G796A mutant was significantly smaller than that of the parental strain. The G796A mutation clearly reduced the growth rate of the parental virus in Vero cells. Furthermore, the G796A mutation also decreased the virulence of the MR766 strain in IFNAR1 knockout mice. These results indicate that the amino acid variation at position 230 in the viral polyprotein, which is located in the M protein sequence, is a molecular determinant for plaque morphology, growth property, and virulence in mice of ZIKV.
Frontiers in Microbiology | 2017
Takayuki Hishiki; Fumihiro Kato; Shigeru Tajima; Kazufumi Toume; Masahito Umezaki; Tomohiko Takasaki; Tomoyuki Miura
Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.
Emerging Infectious Diseases | 2017
Tetsuya Suzuki; Satoshi Kutsuna; Satoshi Taniguchi; Shigeru Tajima; Takahiro Maeki; Fumihiro Kato; Chang-Kweng Lim; Masayuki Saijo; Motoyuki Tsuboi; Kei Yamamoto; Shinichiro Morioka; Masahiro Ishikane; Kayoko Hayakawa; Yasuyuki Kato; Norio Ohmagari
Since April 2017, a dengue fever outbreak has been ongoing in Côte d’Ivoire. We diagnosed dengue fever (type 2 virus) in a traveler returning to Japan from Côte d’Ivoire. Phylogenetic analysis revealed strain homology with the Burkina Faso 2016 strain. This case may serve as an alert to possible disease spread outside Africa.
Emerging Infectious Diseases | 2017
Motoyuki Tsuboi; Satoshi Kutsuna; Takahiro Maeki; Satoshi Taniguchi; Shigeru Tajima; Fumihiro Kato; Chang-Kweng Lim; Masayuki Saijo; Saho Takaya; Yuichi Katanami; Yasuyuki Kato; Norio Ohmagari
In June 2017, dengue virus type 2 infection was diagnosed in 2 travelers returned to Japan from Sri Lanka, where the country’s largest dengue fever outbreak is ongoing. Travelers, especially those previously affected by dengue fever, should take measures to avoid mosquito bites.