Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumiko Sakata is active.

Publication


Featured researches published by Fumiko Sakata.


PLOS ONE | 2016

Vascular Endothelial Cell Injury Is an Important Factor in the Development of Encapsulating Peritoneal Sclerosis in Long-Term Peritoneal Dialysis Patients

Mitsuhiro Tawada; Yasuhiko Ito; Chieko Hamada; Kazuho Honda; Masashi Mizuno; Yasuhiro Suzuki; Fumiko Sakata; Takeshi Terabayashi; Yoshihisa Matsukawa; Shoichi Maruyama; Enyu Imai; Seiichi Matsuo; Yoshifumi Takei

Background and Objectives Encapsulating peritoneal sclerosis (EPS) is a rare but serious and life-threatening complication of peritoneal dialysis (PD). However, the precise pathogenesis remains unclear; in addition, predictors and early diagnostic biomarkers for EPS have not yet to be established. Methods Eighty-three peritoneal membrane samples taken at catheter removal were examined to identify pathological characteristics of chronic peritoneal deterioration, which promotes EPS in patients undergoing long-term PD treatment with low occurrence of peritonitis. Results According to univariable logistic regression analysis of the pathological findings, thickness of the peritoneal membrane (P = 0.045), new membrane formation score (P = 0.006), ratio of luminal diameter to vessel diameter (L/V ratio, P<0.001), presence of CD31-negative vessels (P = 0.021), fibrin deposition (P<0.001), and collagen volume fraction (P = 0.018) were associated with EPS development. In analyses of samples with and without EPS matched for PD treatment period, non-diabetes, and PD solution, univariable analysis identified L/V ratio (per 0.1 increase: odds ratio (OR) 0.44, P = 0.003) and fibrin deposition (OR 6.35, P = 0.027) as the factors associated with EPS. L/V ratio was lower in patients with fibrin exudation than in patients without fibrin exudation. Conclusions These findings suggest that damage to vascular endothelial cells, as represented by low L/V ratio, could be a predictive finding for the development of EPS, particularly in long-term PD patients unaffected by peritonitis.


Laboratory Investigation | 2015

Vascular endothelial growth factor receptor-3 is a novel target to improve net ultrafiltration in methylglyoxal-induced peritoneal injury

Takeshi Terabayashi; Yasuhiko Ito; Masashi Mizuno; Yasuhiro Suzuki; Hiroshi Kinashi; Fumiko Sakata; Takako Tomita; Daiki Iguchi; Mitsuhiro Tawada; Ryosuke Nishio; Shoichi Maruyama; Enyu Imai; Seiichi Matsuo; Yoshifumi Takei

Appropriate fluid balance is important for good clinical outcomes and survival in patients on peritoneal dialysis. We recently reported that lymphangiogenesis associated with fibrosis developed in the peritoneal cavity via the transforming growth factor-β1-vascular endothelial growth factor-C (VEGF-C) pathway. We investigated whether VEGF receptor-3 (VEGFR-3), the receptor for VEGF-C and -D, might be a new target to improve net ultrafiltration by using adenovirus-expressing soluble VEGFR-3 (Adeno-sVEGFR-3) in rodent models of peritoneal injury induced by methylglyoxal (MGO). We demonstrated that lymphangiogenesis developed in these MGO models, especially in the diaphragm, indicating that lymphangiogenesis is a common feature in the peritoneal cavity with inflammation and fibrosis. In MGO models, VEGF-D was significantly increased in the diaphragm; however, VEGF-C was not significantly upregulated. Adeno-sVEGFR-3, which was detected on day 50 after administration via tail vein injections, successfully suppressed lymphangiogenesis in the diaphragm and parietal peritoneum in mouse MGO models without significant effects on fibrosis, inflammation, or neoangiogenesis. Drained volume in the peritoneal equilibration test using a 7.5% icodextrin peritoneal dialysis solution (the 7.5% icodextrin peritoneal equilibration test) was improved by Adeno-sVEGFR-3 on day 22 (P<0.05) and day 50 after reduction of inflammation (P<0.01), indicating that the 7.5% icodextrin peritoneal equilibration test identifies changes in lymphangiogenesis. The solute transport rate was not affected by suppression of lymphangiogenesis. In human peritoneal dialysis patients, the dialysate to plasma ratio of creatinine positively correlated with the dialysate VEGF-D concentration (P<0.001). VEGF-D mRNA was significantly higher in the peritoneal membranes of patients with ultrafiltration failure, indicating that VEGF-D is involved in the development of lymphangiogenesis in peritoneal dialysis patients. These results indicate that VEGFR-3 is a new target to improve net ultrafiltration by suppressing lymphatic absorption and that the 7.5% icodextrin peritoneal equilibration test is useful for estimation of lymphatic absorption.


Internal Medicine | 2015

Calcified Amorphous Tumor in the Left Atrium in a Patient on Long-term Peritoneal Dialysis

Akihito Tanaka; Masashi Mizuno; Yasuhiro Suzuki; Hideki Oshima; Fumiko Sakata; Hideaki Ishikawa; Saori Tsukushi; Yasuhiko Ito

A 66-year-old woman with an 11-year history of peritoneal dialysis (PD) for diabetic nephropathy and renal failure exhibited a movable tumor in the left atrium on echocardiography. Tumor resection was performed due to the difficulty in diagnosing the tumor and the future risk of heart failure and embolization. Light microscopy showed a calcified amorphous tumor (CAT), a rare intracardiac mass characterized by the presence of a pedicle and diffuse calcification. An increased calcium-phosphate product level was suspected as an etiology, although degeneration, inflammation and/or mineral balance disorders may also induce the development of CAT. We herein report the first known case of CAT in a PD patient.


Scientific Reports | 2017

Apoptosis inhibitor of macrophage ameliorates fungus-induced peritoneal injury model in mice

Takako Tomita; Satoko Arai; Kento Kitada; Masashi Mizuno; Yasuhiro Suzuki; Fumiko Sakata; Daisuke Nakano; Emiri Hiramoto; Yoshifumi Takei; Shoichi Maruyama; Akira Nishiyama; Seiichi Matsuo; Toru Miyazaki; Yasuhiko Ito

Fungal peritonitis in a patient on peritoneal dialysis (PD) is a refractory injury accompanied by severe inflammation, predisposing patients to a poor prognosis. Defective clearance of necrotic tissue interferes with amelioration of tissue injury and induces abnormal tissue remodeling. In the recent reports, apoptosis inhibitor of macrophage (AIM, also called CD5L) prevents obesity, hepatocellular carcinoma and acute kidney injury. Here, we investigated potential roles of AIM in prevention of progression of fungal peritonitis models. AIM−/− mice subjected to zymosan-induced peritonitis exhibited progressive inflammation and sustained peritoneal necrosis tissue on day 28 after the disease induction, whereas there was an improvement in AIM+/+ mice. This appeared to be caused by deposition of AIM at the necrotic peritoneum in AIM+/+ mice. In vitro, AIM enhanced the engulfment of necrotic debris by macrophages derived from zymosan-induced peritonitis, M1- and M2a-like bone marrow derived macrophages, as well as by mesothelial cells. In addition, administration of recombinant AIM dramatically ameliorated severe inflammation associated with necrosis in zymosan-induced peritonitis of AIM−/− mice. Our observations suggest that AIM appears to be involved in the repair process of zymosan-induced peritonitis, and thus, could be the basis of development of new therapeutic strategies for PD-related fungal peritonitis.


PLOS ONE | 2017

High levels of soluble C5b-9 complex in dialysis fluid may predict poor prognosis in peritonitis in peritoneal dialysis patients

Masashi Mizuno; Yasuhiro Suzuki; Keiko Higashide; Yumi Sei; Daiki Iguchi; Fumiko Sakata; Masanobu Horie; Shoichi Maruyama; Seiichi Matsuo; B. Paul Morgan; Yasuhiko Ito

Background We searched for indicators to predict the prognosis of infectious peritonitis by measuring levels of complement proteins and activation products in peritoneal dialysis (PD) fluid (PDF) of patients at early stages of peritonitis. We retrospectively analyzed the relationship between the levels of sC5b-9, C3 and C4 in PDF and the subsequent clinical prognosis. Methods We measured levels of sC5b-9, C3 and C4 in PDF on days 1, 2 and 5 post-onset of peritonitis in 104 episodes of infectious peritonitis in PD patients from 2008 and retrospectively compared levels with clinical outcomes. Further analysis for the presence of causative microorganisms or to demonstrate bacterial culture negative peritonitis was performed and correlated with change of levels of sC5b-9 in PDF. Results When PD patients with peritonitis were divided into groups that either failed to recover from peritonitis and were finally withdrawn from PD (group 1; n = 25) or recovered (group 2; n = 79), levels of sC5b-9, C3 and C4 in PDF were significantly higher in group 1 patients compared to those in group 2 on day5. Analysis of microorganisms showed significantly higher sC5b-9 levels in PDF of peritonitis cases caused by culture negative peritonitis in group 1 compared with group 2 when we analyzed for individual microorganisms. Of note, on day5, the sC5b-9 levels in PDF were similarly high in peritonitis caused by fungi or other organisms. Conclusion Our results suggested that levels of complement markers in PDF, especially sC5b-9, have potential as surrogate markers to predict prognosis of PD-related peritonitis.


Laboratory Investigation | 2017

Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice

Fumiko Sakata; Yasuhiko Ito; Masashi Mizuno; Akiho Sawai; Yasuhiro Suzuki; Takako Tomita; Mitsuhiro Tawada; Akio Tanaka; Akiyoshi Hirayama; Akihiro Sagara; Takashi Wada; Shoichi Maruyama; Tomoyoshi Soga; Seiichi Matsuo; Enyu Imai; Yoshifumi Takei

Chronic inflammation, which is often associated with high all-cause and cardiovascular mortality, is prevalent in patients with renal failure; however, the precise mechanisms remain unclear. High-salt intake was reported to induce lymphangiogenesis and autoimmune diseases via osmotic stimuli with accumulation of sodium or chloride. In addition, sodium was recently reported to be stored in the extremities of dialysis patients. We studied the effects and mechanisms of high salt loading on tissue and systemic inflammation in subtotal-nephrectomized mice (5/6Nx) and in cultured cells. Macrophage infiltration in the peritoneal wall (P<0.001), heart (P<0.05) and para-aortic tissues (P<0.001) was significantly higher in 5/6Nx with salt loading (5/6Nx/NaCl) than in 5/6Nx without salt loading (5/6Nx/Water); however, there were no significant differences in blood pressure and renal function between the groups. Tissue interleukin-6, monocyte chemotactic protein-1 (MCP-1), serum- and glucocorticoid-inducible kinase 1 (Sgk1) and tonicity-responsive enhancer binding protein (TonEBP) mRNA were significantly elevated in the peritoneal wall and heart with 5/6Nx/NaCl when compared with 5/6Nx/Water. Sodium was stored in the abdominal wall, exerting high-osmotic conditions. Reversal of salt loading reduced macrophage infiltration associated with decreased TonEBP in 5/6Nx/NaCl. Macrophage infiltration associated with fibrosis induced by salt loading was decreased in the 5/6Nx/NaCl/CC chemokine receptor 2 (CCR2, receptor of MCP-1)-deficient mice when compared with 5/6Nx/NaCl/Wild mice, suggesting that CCR2 is required for macrophage infiltration in 5/6Nx with NaCl loading. In cultured mesothelial cells and cardiomyocytes, culture media with high NaCl concentration induced MCP-1, Sgk1 and TonEBP mRNA, all of which were suppressed by TonEBP siRNA, indicating that both MCP-1 and Sgk1 are downstream of TonEBP. Our study indicates that high NaCl intake induces MCP-1 expression leading to macrophage infiltration via the TonEBP-MCP-1 pathway in 5/6Nx/NaCl mice, and that TonEBP has a central role in inflammation in patients with renal failure taking high salt.


American Journal of Physiology-renal Physiology | 2018

TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis

Tetsuyoshi Kariya; Hayato Nishimura; Masashi Mizuno; Yasuhiro Suzuki; Yoshihisa Matsukawa; Fumiko Sakata; Shoichi Maruyama; Yoshifumi Takei; Yasuhiko Ito

The characteristic features of chronic peritoneal injury with peritoneal dialysis (PD) are submesothelial fibrosis and neoangiogenesis. Transforming growth factor (TGF)β and vascular endothelial growth factor (VEGF)-A are the main mediators of fibrosis and neoangiogenesis, respectively; however, the effect of the interaction between them on the peritoneum is not well known. In this study, we investigated the relationship between TGF-β1 and VEGF-A in inducing peritoneal fibrosis by use of human tissues and dialysate, cultured cells, and animal models. The VEGF-A concentration correlated with the dialysate-to-plasma ratio of creatinine (D/P Cr) ( P < 0.001) and TGF-β1 ( P < 0.001) in human PD effluent. VEGF-A mRNA levels increased significantly in the peritoneal tissues of human ultrafiltration failure (UFF) patients and correlated with number of vessels ( P < 0.01) and peritoneal thickness ( P < 0.001). TGF-β1 increased VEGF-A production in human mesothelial cell lines and fibroblast cell lines, and TGF-β1-induced VEGF-A was suppressed by TGF-β receptor I (TGFβR-I) inhibitor. Incremental peak values of VEGF-A mRNA stimulated by TGF-β1 in human cultured mesothelial cells derived from PD patients with a range of peritoneal membrane functions correlated with D/P Cr ( P < 0.05). To evaluate the regulatory mechanisms of VEGF-A and neoangiogenesis in vivo, we administered TGFβR-I inhibitor intraperitoneally in a rat chlorhexidine-induced peritoneal injury (CG) model. TGFβR-I inhibitor administration in the CG model decreased peritoneal thickness ( P < 0.001), the number of vessels ( P < 0.001), and VEGF-A levels ( P < 0.05). These results suggest that neoangiogenesis is associated with fibrosis through the TGF-β1-VEGF-A pathway in mesothelial cells and fibroblasts. These findings are important when considering the strategy for management of UFF in PD patients.


Renal Replacement Therapy | 2016

Which clinical conditions are most suitable for induction of automated peritoneal dialysis

Masashi Mizuno; Yasuhiro Suzuki; Fumiko Sakata; Yasuhiko Ito

This review article is an invited review by both the Japanese Society for Dialysis Therapy (JSDT) and Japanese Society for Peritoneal Dialysis (JSPD).Automated peritoneal dialysis (APD) using a cycler machine is an alternative choice for patients who are on peritoneal dialysis (PD) for the treatment of end-stage renal disease (ESRD). The main purpose is to allow more free time and an improved quality of life for PD patients versus continuous ambulatory PD (CAPD). However, it remains unclear which modality is a better choice, especially with regard to the induction period of PD, due to a lack of research. When we propose PD therapy to ESRD patients, in addition to the obvious benefit of more free time, we also need to consider the advantages and disadvantages with regard to each patient’s medical comorbidities, physical condition, social activities, psychological readiness, and medical economics.In this review, we attempted to determine which method is more advantageous overall, APD or CAPD. In conclusion, it is important to consider the medical, social, physical, and economic aspects for each PD patient as well as patient preference when helping patients choose between APD and CAPD.


Renal Replacement Therapy | 2016

Mineralocorticoid receptor antagonists in dialysis patients

Mitsuhiro Tawada; Yasuhiro Suzuki; Fumiko Sakata; Masashi Mizuno; Yasuhiko Ito

Mineralocorticoid receptor (MR) antagonists are known to have beneficial effects in patients with cardiovascular disease without renal failure. However, there have been few published studies on the effectiveness of MR antagonists in dialysis patients, and most of the studies were small-sized. The present review focuses on the effectiveness of MR antagonists and the risk of hyperkalemia in dialysis patients. Severe hyperkalemia due to treatment with MR antagonists in dialysis patients is not common, particularly in peritoneal dialysis (PD) patients, and the prospect of cardioprotective effects has been hopeful in both hemodialysis (HD) and PD patients. Further studies are required to establish optimal protocols for the use of MR antagonists in these patients without adverse effects.


Clinical and Experimental Nephrology | 2018

Differences in peritoneal solute transport rates in peritoneal dialysis

Marina Asano; Takako Ishii; Akiyoshi Hirayama; Masashi Mizuno; Yasuhiro Suzuki; Fumiko Sakata; Shinichi Akiyama; Shoichi Maruyama; Tomoyoshi Soga; Hiroshi Kinashi; Takayuki Katsuno; Yasuhiko Ito

BackgroundUltrafiltration failure associated with peritoneal membrane dysfunction is one of the main complications for patients on long-term peritoneal dialysis (PD). The dialysate-to-plasma concentration ratio (D/P) of creatinine is widely used to assess peritoneal membrane function. However, other small-sized solutes have not been studied in detail as potential indicators of peritoneal permeability.MethodsWe studied the D/Ps of small, middle-sized and large molecules in peritoneal equilibration tests in 50 PD patients. We applied metabolomic analysis of comprehensive small molecular metabolites using capillary electrophoresis time-of-flight mass spectrometry.ResultsD/Ps of middle-sized and large molecules correlated positively with D/P creatinine. Most D/Ps of small molecules correlated positively with D/P creatinine. Among 38 small molecules contained in the dialysate, urea, citrulline and choline showed significantly lower ability to permeate than creatinine. In the relationship between D/Ps of creatinine and small molecules, regression coefficients of three molecules were less than 0.3, representing no correlation to D/P creatinine. Five molecules showed negative regression coefficients. Among these molecules, hippurate and 3-indoxyl sulfate showed relatively high teinpro binding rates, which may affect permeability. Serum concentrations of two molecules were higher in the Low Kt/V group, mainly due to high protein binding rates.ConclusionsD/Ps of some molecules did not correlate with D/P creatinine. Factors other than molecular weight, such as charge and protein binding rate, are involved in peritoneal transport rates. Metabolomic analysis appears useful to analyze small molecular uremic toxins, which could accumulate in PD patients, and the status of peritoneal membrane transport for each molecule.

Collaboration


Dive into the Fumiko Sakata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuhiro Suzuki

Kansai Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge