Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumiko Shinkai-Ouchi is active.

Publication


Featured researches published by Fumiko Shinkai-Ouchi.


PLOS Pathogens | 2011

Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

Noëlla Arnaud; Stéphanie Dabo; Daisuke Akazawa; Masayoshi Fukasawa; Fumiko Shinkai-Ouchi; Jacques Hugon; Takaji Wakita; Eliane F. Meurs

Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response.


Journal of Biological Chemistry | 2007

Interorganelle Trafficking of Ceramide Is Regulated by Phosphorylation-dependent Cooperativity between the PH and START Domains of CERT

Keigo Kumagai; Miyuki Kawano; Fumiko Shinkai-Ouchi; Masahiro Nishijima; Kentaro Hanada

The synthesis and transport of lipids are essential events for membrane biogenesis. However, little is known about how intracellular trafficking of lipids is regulated. Ceramide is synthesized at the endoplasmic reticulum (ER) and transported by the ceramide transfer protein CERT to the Golgi apparatus, where it is converted to sphingomyelin. CERT has a phosphoinositide-binding pleckstrin homology (PH) domain for Golgi-targeting and a lipid transfer START domain for intermembrane transfer of ceramide. We here show that CERT receives multiple phosphorylations at a serine-repeat motif, a possibe site for casein kinase I, and that the phosphorylation down-regulates the ER-to-Golgi transport of ceramide. In vitro assays show that the phosphorylation induces an autoinhibitory interaction between the PH and START domains and consequently inactivates both the phosphoinositide binding and ceramide transfer activities of CERT. Loss of sphingomyelin and cholesterol from cells causes dephosphorylation of CERT to activate it. The cooperative control of functionally distinct domains of CERT is a novel molecular event to regulate the intracellular trafficking of ceramide.


Journal of Virology | 2009

Involvement of Creatine Kinase B in Hepatitis C Virus Genome Replication through Interaction with the Viral NS4A Protein

Hiromichi Hara; Hideki Aizaki; Mami Matsuda; Fumiko Shinkai-Ouchi; Yasushi Inoue; Kyoko Murakami; Ikuo Shoji; Hayato Kawakami; Yoshiharu Matsuura; Michael M. C. Lai; Tatsuo Miyamura; Takaji Wakita; Tetsuro Suzuki

ABSTRACT Persistent infection with hepatitis C virus (HCV) is a major cause of chronic liver diseases. The aim of this study was to identify host cell factor(s) participating in the HCV replication complex (RC) and to clarify the regulatory mechanisms of viral genome replication dependent on the host-derived factor(s) identified. By comparative proteome analysis of RC-rich membrane fractions and subsequent gene silencing mediated by RNA interference, we identified several candidates for RC components involved in HCV replication. We found that one of these candidates, creatine kinase B (CKB), a key ATP-generating enzyme that regulates ATP in subcellular compartments of nonmuscle cells, is important for efficient replication of the HCV genome and propagation of infectious virus. CKB interacts with HCV NS4A protein and forms a complex with NS3-4A, which possesses multiple enzyme activities. CKB upregulates both NS3-4A-mediated unwinding of RNA and DNA in vitro and replicase activity in permeabilized HCV replicating cells. Our results support a model in which recruitment of CKB to the HCV RC compartment, which has high and fluctuating energy demands, through its interaction with NS4A is important for efficient replication of the viral genome. The CKB-NS4A association is a potential target for the development of a new type of antiviral therapeutic strategy.


Virology | 2009

Cellular vimentin content regulates the protein level of hepatitis C virus core protein and the hepatitis C virus production in cultured cells.

Yuko Nitahara-Kasahara; Masayoshi Fukasawa; Fumiko Shinkai-Ouchi; Shigeko Sato; Tetsuro Suzuki; Kyoko Murakami; Takaji Wakita; Kentaro Hanada; Tatsuo Miyamura; Masahiro Nishijima

Hepatitis C virus (HCV) core protein is essential for virus particle formation. Using HCV core-expressing and non-expressing Huh7 cell lines, Uc39-6 and Uc321, respectively, we performed comparative proteomic studies of proteins in the 0.5% Triton X-100-insoluble fractions of cells, and found that core-expressing Uc39-6 cells had much lower vimentin content than Uc321 cells. In experiments using vimentin-overexpressing and vimentin-knocked-down cells, we demonstrated that core protein levels were affected by cellular vimentin content. When vimentin expression was knocked-down, there was no difference in mRNA level of core protein; but proteasome-dependent degradation of the core protein was strongly reduced. These findings suggest that the turnover rate of core protein is regulated by cellular vimentin content. HCV production was also affected by cellular vimentin content. Our findings together suggest that modulation of hepatic vimentin expression might enable the control of HCV production.


Journal of Virology | 2012

Mouse Prion Protein (PrP) Segment 100 to 104 Regulates Conversion of PrPC to PrPSc in Prion-Infected Neuroblastoma Cells

Hideyuki Hara; Yuko Okemoto-Nakamura; Fumiko Shinkai-Ouchi; Kentaro Hanada; Yoshio Yamakawa; Ken'ichi Hagiwara

ABSTRACT Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrPSc; PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrPC) to PrPSc and the subsequent conversion of PrPC to PrPSc. We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrPC and PrPSc. Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrPSc state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrPSc and interfered with the conversion of endogenous MoPrPC. The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrPSc. Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrPC reduced the accumulation of PrPSc after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrPC plays a key role in conversion after binding to MoPrPSc.


Journal of Virology | 2012

Mouse PrP Segment 100-104 Regulates Conversion of PrPC to PrPSc in Prion-infected Neuroblastoma Cells

Hideyuki Hara; Yuko Okemoto-Nakamura; Fumiko Shinkai-Ouchi; Kentaro Hanada; Yoshio Yamakawa; Ken'ichi Hagiwara

ABSTRACT Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrPSc; PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrPC) to PrPSc and the subsequent conversion of PrPC to PrPSc. We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrPC and PrPSc. Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrPSc state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrPSc and interfered with the conversion of endogenous MoPrPC. The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrPSc. Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrPC reduced the accumulation of PrPSc after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrPC plays a key role in conversion after binding to MoPrPSc.


Biochemical and Biophysical Research Communications | 2009

Identification of nucleolin as a protein that binds to human papillomavirus type 16 DNA.

Hidetaka Sato; Rika Kusumoto-Matsuo; Yoshiyuki Ishii; Seiichiro Mori; Tomomi Nakahara; Fumiko Shinkai-Ouchi; Kei Kawana; Tomoyuki Fujii; Yuji Taketani; Tadahito Kanda; Iwao Kukimoto

Transcription, replication, and segregation of human papillomaviruses (HPVs) are regulated by various host factors, but our understanding of host proteins that bind to the HPV genome is limited. Here we report the results of a search of cellular proteins that can associate with specific genomic regions of HPV type 16 (HPV16). We found that human nucleolin, an abundant nucleolar protein, was preferentially captured in vitro by an HPV16 genomic fragment from nucleotide positions (nt) 531-780. Electrophoretic mobility shift assays with a bacterially expressed nucleolin revealed that nucleolin bound to an HPV16 genomic region between nt 604 and 614 in a sequence-dependent manner. Chromatin immunoprecipitation analysis showed that both exogenous and endogenous nucleolin bound to a plasmid containing the HPV16 genomic region in HeLa cells. Furthermore, nucleolin associated with the HPV16 genome stably maintained in HPV16-infected W12 cells, suggesting that the nucleolin binding may be involved in the dynamics of the HPV genome in cells.


Proteome Science | 2010

Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases.

Fumiko Shinkai-Ouchi; Yoshio Yamakawa; Hideyuki Hara; Minoru Tobiume; Masahiro Nishijima; Kentaro Hanada; Ken’ichi Hagiwara

BackgroundPrion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrPSc) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrPSc, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood.ResultsIn a proteomic analysis of soluble proteins in the brains of mice challenged intracerebrally with scrapie prion (Obihiro I strain), we found that the amount of the full-length form of collapsin response mediator protein-2 (CRMP-2; 61 kDa) decreased in the late stages of the disease, while the amount of its truncated form (56 kDa) increased to comparable levels observed for the full-length form. Detailed analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry showed that the 56-kDa form (named CRMP-2-ΔC) lacked the sequence from serine518 to the C-terminus, including the C-terminal phosphorylation sites important for the regulation of axonal growth and axon-dendrite specification in developing neurons. The invariable size of the mRNA transcript in Northern blot analysis suggested that the truncation was due to post-translational proteolysis. By overexpression of CRMP-2-ΔC in primary cultured neurons, we observed the augmentation of the development of neurite branch tips to the same levels as for CRMP-2T514A/T555A, a non-phosphorylated mimic of the full-length protein. This suggests that the increased level of CRMP-2-ΔC in the brain modulates the integrity of neurons, and may be involved in the pathogenesis of the neuronal abnormalities observed in the late stages of the disease.ConclusionsWe identified the presence of CRMP-2-ΔC in the brain of a murine model of prion disease. Of note, C-terminal truncations of CRMP-2 have been recently observed in models for neurodegenerative disorders such as ischemia, traumatic brain injury, and Wallerian degeneration. While the structural identity of CRMP-2-ΔC in those models remains unknown, the present study should provide clues to the molecular pathology of degenerating neurons in prion diseases in connection with other neurodegenerative disorders.


Virology Journal | 2007

Thiol-reactive reagents inhibits intracellular trafficking of human papillomavirus type 16 pseudovirions by binding to cysteine residues of major capsid protein L1

Yoshiyuki Ishii; Kazunari Kondo; Tamae Matsumoto; Keiko Tanaka; Fumiko Shinkai-Ouchi; Ken’ichi Hagiwara; Tadahito Kanda


Cytokine | 2011

CS09-6. Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

Noëlla Arnaud; Stéphanie Dabo; Daisuke Akazawa; Masayoshi Fukasawa; Fumiko Shinkai-Ouchi; Jacques Hugon; Takaji Wakita; Eliane F. Meurs

Collaboration


Dive into the Fumiko Shinkai-Ouchi's collaboration.

Top Co-Authors

Avatar

Kentaro Hanada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takaji Wakita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yoshio Yamakawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ken’ichi Hagiwara

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Masahiro Nishijima

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Masayoshi Fukasawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yuko Okemoto-Nakamura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Akazawa

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge