Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumin Chang is active.

Publication


Featured researches published by Fumin Chang.


Leukemia | 2003

Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy

Fumin Chang; John T. Lee; Patrick M. Navolanic; Linda S. Steelman; John G. Shelton; W L Blalock; Richard A. Franklin; James A. McCubrey

The PI3K/Akt signal transduction cascade has been investigated extensively for its roles in oncogenic transformation. Initial studies implicated both PI3K and Akt in prevention of apoptosis. However, more recent evidence has also associated this pathway with regulation of cell cycle progression. Uncovering the signaling network spanning from extracellular environment to the nucleus should illuminate biochemical events contributing to malignant transformation. Here, we discuss PI3K/Akt-mediated signal transduction including its mechanisms of activation, signal transducing molecules, and effects on gene expression that contribute to tumorigenesis. Effects of PI3K/Akt signaling on important proteins controlling cellular proliferation are emphasized. These targets include cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors. Furthermore, strategies used to inhibit the PI3K/Akt pathway are presented. The potential for cancer treatment with agents inhibiting this pathway is also addressed.


Leukemia | 2003

Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention.

Fumin Chang; Linda S. Steelman; John T. Lee; John G. Shelton; Patrick M. Navolanic; W L Blalock; Richard A. Franklin; James A. McCubrey

The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.


Leukemia | 1999

Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs.

W L Blalock; C Weinstein-Oppenheimer; Fumin Chang; Pe Hoyle; Wang Xy; Algate Pa; Richard A. Franklin; Stephanie M. Oberhaus; Linda S. Steelman; James A. McCubrey

Over the past decade, there has been an exponential increase in our knowledge of how cytokines regulate signal transduction, cell cycle progression, differentiation and apoptosis. Research has focused on different biochemical and genetic aspects of these processes. Initially, cytokines were identified by clonogenic assays and purified by biochemical techniques. This soon led to the molecular cloning of the genes encoding the cytokines and their cognate receptors. Determining the structure and regulation of these genes in normal and malignant hematopoietic cells has furthered our understanding of neoplastic transformation. Furthermore, this has allowed the design of modified cytokines which are able to stimulate multiple receptors and be more effective in stimulating the repopulation of hematopoietic cells after myelosuppressive chemotherapy. The mechanisms by which cytokines transduce their regulatory signals have been evaluated by identifying the involvement of specific protein kinase cascades and their downstream transcription factor targets. The effects of cytokines on cell cycle regulatory molecules, which either promote or arrest cell cycle progression, have been more recently examined. In addition, the mechanisms by which cytokines regulate apoptotic proteins, which mediate survival vs death, are being elucidated. Identification and characterization of these complex, interconnected pathways has expanded our knowledge of leukemogenesis substantially. This information has the potential to guide the development of therapeutic drugs designed to target key intermediates in these pathways and effectively treat patients with leukemias and lymphomas. This review focuses on the current understanding of how hematopoietic cytokines such as IL-3, as well as its cognate receptor, are expressed and the mechanisms by which they transmit their growth regulatory signals. The effects of aberrant regulation of these molecules on signal transduction, cell cycle regulatory and apoptotic pathways in transformed hematopoietic cells are discussed. Finally, anti-neoplastic drugs that target crucial constituents in these pathways are evaluated.


Pharmacology & Therapeutics | 2000

The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors

Caroline Weinstein-Oppenheimer; William L Blalock; Linda S. Steelman; Fumin Chang; James A. McCubrey

This review focuses on the Ras-Raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signal transduction pathway and the consequences of its unregulation in the development of cancer. The roles of some of the cell membrane receptors involved in the activation of this pathway, the G-protein Ras, the Raf, MEK and ERK kinases, the phosphatases that regulate these kinases, as well as the downstream transcription factors that become activated, are discussed. The roles of the Ras-Raf-MEK-ERK pathway in the regulation of apoptosis and cell cycle progression are also analyzed. In addition, potential targets for pharmacological intervention in growth factor-responsive cells are evaluated.


Oncogene | 2001

P21(Cip1) induced by Raf is associated with increased Cdk4 activity in hematopoietic cells.

Fumin Chang; James A. McCubrey

To investigate the functions of the different Raf genes in hematopoietic cell proliferation, the capacities of β-estradiol-regulated ΔRaf:ER genes to induce cell cycle regulatory gene expression and cell cycle progression in FDC-P1 cells were examined. Raf activation increased the expression of Cdk2, Cdk4, cyclin A, cyclin D, cyclin E, p21Cip1 and c-Myc and decreased the expression of p27Kip1 which are associated with G1 progression. However only the cell clones with moderate Raf activation, i.e. FD/ΔRaf-1:ER and FD/ΔA-Raf:ER, successfully underwent cell proliferation. The cell clones with the highest ΔRaf activity, FD/ΔB-Raf:ER, underwent apoptosis before cell proliferation. p21Cip1 induced by Raf activation specifically bound with Cdk4/cyclin D complexes but not Cdk2/cyclin E complexes and this binding was associated with the increased Cdk4 activity. However, no binding of p27Kip1 with either Cdk2/cyclin E or Cdk4/cyclin D was observed. Thus Raf mediated growth was associated with elevated p21Cip1 expression, which may specifically bind with and activate Cdk4/cyclin D complexes and with decreased p27Kip1 expression.


Leukemia | 2000

Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine dependency of human and murine hematopoietic cells.

William L. Blalock; Pw Moye; Fumin Chang; M Pearce; Linda S. Steelman; Martin McMahon; James A. McCubrey

The MEK1 oncoprotein plays a critical role in Ras/Raf/ MEK/MAPK-mediated transmission of mitogenic signals from cell surface receptors to the nucleus. In order to examine this pathways role in leukemic transformation, a conditionally active (β-estradiol-inducible) form of the MEK1 protein was created by ligating a cDNA encoding an N-terminal truncated form of MEK1 to the hormone-binding domain of the estrogen receptor (ER). We introduced this chimeric ΔMEK1:ER oncoprotein into cytokine-dependent human TF-1 and murine FDC-P1 hematopoietic cell lines. Two different types of cells were recovered after drug selection in medium containing either cytokine or β-estradiol: (1) cells that expressed the ΔMEK1:ER oncoprotein but remained cytokine-dependent and (2) MEK1-responsive cells that grew in response to ΔMEK1:ER activation. Cytokine-dependent cells were recovered 102 to 104 times more frequently than MEK1-responsive cells depending upon the particular cell line. To determine whether BCL2 overexpression could synergize with the ΔMEK1:ER oncoprotein in relieving cytokine dependence, the cytokine-dependent ΔMEK1:ER-expressing cells were infected with a BCL2-containing retrovirus, and the frequency of MEK1-responsive cells determined. BCL2 overexpression, by itself, did not relieve cytokine dependency of the parental cells, however, it did increase the frequency at which MEK1-responsive cells were recovered approximately 10-fold. ΔMEK1:ER+BCL2 cells remained viable for at least 3 days after estradiol deprivation, whereas viability was readily lost upon withdrawal of β-estradiol in the MEK1-responsive cells which lacked BCL2 overexpression. The MAP kinases, ERK1 and ERK2 were activated in response to ΔMEK1:ER stimulation in both ΔMEK1:ER and ΔMEK1:ER+BCL2 cells. As compared to the cytokine-dependent ΔMEK1:ER and BCL2 infected cells, MEK1-responsive BCL2 infected cells expressed higher levels of BCL2. While both MEK1-responsive ΔMEK1:ER and ΔMEK1:ER+BCL2 infected cells expressed cDNAs encoding the autocrine cytokine GM-CSF, more GM-CSF cDNAs and bioactivity were detected in the MEK1-responsive ΔMEK1:ER+BCL2 cells than in the MEK1-responsive cells lacking BCL2 or cytokine-dependent cells. These conditionally transformed cells will be useful in furthering our understanding of the roles MEK1 and BCL2 play in the prevention of apoptosis in hematopoietic cells.


Leukemia | 2001

Effects of inducible MEK1 activation on the cytokine dependency of lymphoid cells.

William L. Blalock; M Pearce; Fumin Chang; John T. Lee; Steven C. Pohnert; C Burrows; Linda S. Steelman; Richard A. Franklin; M McMahon; James A. McCubrey

The Raf/MEK/MAP kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1, we demonstrate the ability of this dual specificity protein kinase to abrogate the cytokine dependency of the murine lymphoid hematopoietic cell line FL5.12. Cytokine-independent cells were obtained from FL5.12 cells at a frequency of 1 × 10−7, indicating that a low frequency of cells expressing ΔMEK1:ER were factor-independent. In general, cells that were converted to a cytokine-independent phenotype displayed a higher level of MAP kinase activity in response to ΔMEK1:ER activation than those that remained cytokine-dependent. ΔMEK1:ER-responsive cells could be maintained long-term in the presence of β-estradiol, as well as the estrogen-receptor antagonist 4-hydroxy-tamoxifen. Removal of hormone led to the rapid cessation of cell growth in a manner similar to that observed when cytokine is withdrawn from the parental cells. GM-CSF mRNA transcripts were detected in the MEK1-responsive cells indicating that activated ΔMEK1:ER may induce a pathway leading to autocrine proliferation. Cytokine-dependent ΔMEK1:ER cells were found to increase the expression of GM-CSF receptor α (GM-CSFRα) in response to β-estradiol. In contrast, MEK1-responsive cells were found to express constitutively lower levels of GM-CSFRα and β common (βc) chains indicating that constitutive GM-CSF expression resulted in a decrease in GM-CSFR expression. Treatment of parental cells with supernatant from MEK1-responsive FL5.12 cells was sufficient to promote [3H]-thymidine incorporation. GM-CSF was found to enhance the viability of FL5.12 cells. The cell lines described here will be useful for elaborating the ability of the MAP kinase pathway to regulate cell proliferation in hematopoietic cells.


Leukemia | 2000

Synergy between Raf and BCL2 in abrogating the cytokine dependency of hematopoietic cells.

Pw Moye; William L. Blalock; Pe Hoyle; Fumin Chang; Richard A. Franklin; C Weinstein-Oppenheimer; M Pearce; Linda S. Steelman; Martin McMahon; James A. McCubrey

The Raf oncoprotein plays critical roles in the transmission of mitogenic signals from cytokine receptors to the nucleus. There are three Raf family members: A-Raf, B-Raf and Raf-1. Conditionally active forms of the Raf proteins were created by ligating N-terminal truncated activated forms to the estrogen-receptor (ER) hormone-binding domain resulting in β-estradiol-inducible constructs. We introduced these chimeric ΔRaf:ER oncoproteins into the murine FDC-P1 hematopoietic cell line. Two different types of cells were recovered after drug selection in medium containing either cytokine or β-estradiol: (1) cytokine-dependent cells that expressed the ΔRaf:ER oncoproteins; and (2) Raf-responsive cells that grew in response to the ΔRaf:ER oncoprotein. Depending upon the particular ΔRaf:ER oncoprotein, cytokine-dependent cells were recovered 103 to 105 times more frequently than Raf-responsive cells. To determine whether BCL2 could synergize with the ΔRaf:ER oncoproteins and increase the frequency of cytokine-independent cells, cytokine-dependent ΔRaf:ER-expressing cells were infected with either a BCL2 containing retrovirus or an empty retroviral vector. BCL2 overexpression, by itself, did not relieve cytokine dependency of the parental cell line. However, BCL2 overexpression increased the frequency of Raf-responsive cells approximately five- to 100-fold. Cytokine-dependent ΔRaf:ER-infected cells entered the G1 phase of the cell cycle after cytokine withdrawal and entered S phase only after cytokine addition. Raf-responsive ΔRaf:ER cells entered the G1phase of the cell cycle after estrogen deprivation and re-entered the cell cycle after addition of either IL-3 or the estrogen receptor antagonist tamoxifen which activates the ΔRaf:ER constructs. Expression of the BCL2 oncoprotein often delayed the exit from the S and G2/M phases demonstrating the protective effects BCL2 provided to these Raf and BCL2 infected cells. The ΔRaf:ER cells expressed the ΔRaf:ER proteins and downstream MEK and ERK activities after β-estradiol treatment. Raf-responsive cells that were also infected with BCL2 expressed higher levels of BCL2 than the cells that were not infected with BCL2. Thus BCL2 can synergize with the activated Raf in the abrogation of cytokine dependency of certain hematopoietic cells. These cells will be useful in furthering our understanding of the roles of the Raf and BCL2 oncoproteins in hematopoietic cell growth, cell cycle progression and prevention of apoptosis.


Cell Cycle | 2002

Raf-induced cell cycle progression in human TF-1 hematopoietic cells.

Fumin Chang; Linda S. Steelman; James A. McCubrey

Ras/Raf/MEK/ERK is a crucial pathway regulating cell cycle progression, apoptosis, and drug resistance. The Ras oncogene is frequently mutated in human cancer, which can result in the activation of the downstream Raf/MEK/ERK cascade leading to cell cycle progression in the absence of a growth stimulus. Raf-induced proliferation has been observed in hematopoietic cells. However, the mechanisms by which Raf affects cell cycle progression are not well described. To investigate the importance of Raf/MEK/ERK signaling in human hematopoietic cell growth, the effects of three different Raf genes, A-Raf, B-Raf and Raf-1, on cell cycle progression and regulatory gene expression were examined in TF-1 cells transformed to grow in response to b-estradiol-regulated DRaf:ER genes. Raf activation increased the expression of cyclin A, cyclin D, cyclin E, and p21Cip1, which are associated with G1 progression. Activated DRaf-1:ER and DA-Raf:ER but not DB-Raf:ER increased Cdk2 and Cdk4 kinase activity. The regulatory role of p16Ink4a, a potent Cdk4 kinase inhibitor, on the kinase activity of Cdk2 and Cdk4 was also examined. Raf induced p16Ink4a suppressor but this did not eliminate Cdk4 kinase activity. These results indicate that human hematopoietic cells transformed to grow in response to activated Raf can be used to elucidate the mechanisms by which various cell cycle regulatory molecules effect cell cycle progression. Furthermore, the differences that the various Raf isoforms have on Cdk4 activity and other cell cycle regulatory molecules can be determined in these cells. Key Words: Cell cycle, Raf, p21Cip1, p27Kip1, Cyclins, Cdks, Hematopoietic cells


Cell Cycle | 2004

B-Raf and Insulin Synergistically Prevent Apoptosis and Induce Cell Cycle Progression in Hematopoietic Cell

John G. Shelton; Fumin Chang; John T. Lee; Richard A. Franklin; Linda S. Steelman; James A. McCubrey

FDC-P1 hematopoietic cells were conditionally transformed to grow in response to ΔB-Raf:ER, ΔRaf-1:ER or ΔA-Raf:ER in which the hormone binding domain of the estrogen receptor (ER) was linked to the N-terminal truncated (Δ) Raf genes. When these cells were deprived of IL-3 or β-estradiol for 24 hrs, they exited the cell cycle and underwent apoptosis. FD/ΔRaf-1:ER and FD/ΔA-Raf:ER, but not FD/ΔB-Raf:ER cells, were readily induced to re-enter the cell cycle after addition of β-estradiol or IL-3. Deprived FD/ΔRaf-1:ER, but not FD/ΔB-Raf:ER cells, expressed activated forms of MEK1 and ERK after β-estradiol or IL-3 stimulation. Insulin or β-estradiol alone did not induce FD/ΔB-Raf:ER cells to re-enter the cell cycle, whereas cell cycle entry was observed upon their co-addition. Apoptosis was prevented in FD/ΔB-Raf:ER cells when they were cultured in the presence of IL-3 or β-estradiol, whereas they underwent apoptosis in their absence. Insulin by itself did not prevent apoptosis, however, upon ΔB-Raf:ER or ΔRaf-1:ER activation and addition of insulin, more than an additive effect was observed in both lines indicating that these pathways synergized to prevent apoptosis. Raf isoforms differ in their abilities to control apoptosis and cell cycle progression and B-Raf requires insulin-activated pathways for full antiapoptotic and proliferative activity.

Collaboration


Dive into the Fumin Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Pearce

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Pw Moye

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge