Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumin Guo is active.

Publication


Featured researches published by Fumin Guo.


Journal of Magnetic Resonance Imaging | 2015

Ultra-short echo-time pulmonary MRI: evaluation and reproducibility in COPD subjects with and without bronchiectasis.

Weijing Ma; Khadija Sheikh; Sarah Svenningsen; Damien Pike; Fumin Guo; Roya Etemad-Rezai; J. Leipsic; Harvey O. Coxson; David G. McCormack; Grace Parraga

To evaluate ultra‐short‐echo‐time (UTE) MRI pulmonary signal‐intensity measurements and reproducibility in chronic obstructive pulmonary disease (COPD).


Medical Image Analysis | 2015

Globally optimal co-segmentation of three-dimensional pulmonary 1 H and hyperpolarized 3 He MRI with spatial consistence prior

Fumin Guo; Jing Yuan; Martin Rajchl; Sarah Svenningsen; Dante P. I. Capaldi; Khadija Sheikh; Aaron Fenster; Grace Parraga

Pulmonary imaging using hyperpolarized (3)He/(129)Xe gas is emerging as a new way to understand the regional nature of pulmonary ventilation abnormalities in obstructive lung diseases. However, the quantitative information derived is completely dependent on robust methods to segment both functional and structural/anatomical data. Here, we propose an approach to jointly segment the lung cavity from (1)H and (3)He pulmonary magnetic resonance images (MRI) by constraining the spatial consistency of the two segmentation regions, which simultaneously employs the image features from both modalities. We formulated the proposed co-segmentation problem as a coupled continuous min-cut model and showed that this combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. In particular, we introduced a dual coupled continuous max-flow model to study the convex relaxed coupled continuous min-cut model under a primal and dual perspective. This gave rise to an efficient duality-based convex optimization algorithm. We implemented the proposed algorithm in parallel using general-purpose programming on graphics processing unit (GPGPU), which substantially increased its computational efficiency. Our experiments explored a clinical dataset of 25 subjects with chronic obstructive pulmonary disease (COPD) across a wide range of disease severity. The results showed that the proposed co-segmentation approach yielded superior performance compared to single-channel image segmentation in terms of precision, accuracy and robustness.


European Respiratory Journal | 2016

Is ventilation heterogeneity related to asthma control

Sarah Svenningsen; Parameswaran Nair; Fumin Guo; David G. McCormack; Grace Parraga

In asthma patients, magnetic resonance imaging (MRI) and the lung clearance index (LCI) have revealed persistent ventilation heterogeneity, although its relationship to asthma control is not well understood. Therefore, our goal was to explore the relationship of MRI ventilation defects and the LCI with asthma control and quality of life in patients with severe, poorly controlled asthma. 18 patients with severe, poorly controlled asthma (mean±sd 46±12 years, six males/12 females) provided written informed consent to an ethics board approved protocol, and underwent spirometry, LCI and 3He MRI during a single 2-h visit. Asthma control and quality of life were evaluated using the Asthma Control Questionnaire (ACQ) and Asthma Quality of Life Questionnaire (AQLQ). Ventilation heterogeneity was quantified using the LCI and 3He MRI ventilation defect percent (VDP). All participants reported poorly controlled disease (mean±sd ACQ score=2.3±0.9) and highly heterogeneous ventilation (mean±sd VDP=12±11% and LCI=10.5±3.0). While VDP and LCI were strongly correlated (r=0.86, p<0.0001), in a multivariate model that included forced expiratory volume in 1 s, VDP and LCI, VDP was the only independent predictor of asthma control (R2=0.38, p=0.01). There was also a significantly worse VDP, but not LCI in asthma patients with an ACQ score >2 (p=0.04) and AQLQ score <5 (p=0.04), and a trend towards worse VDP (p=0.053), but not LCI in asthma patients reporting ≥1 exacerbation in the past 6 months. In patients with poorly controlled, severe asthma MRI ventilation, but not LCI was significantly worse in those with worse ACQ and AQLQ. MRI ventilation defects, but not LCI, are worse in patients with worse asthma control and asthma-related QoL http://ow.ly/4n9uip


Academic Radiology | 2014

Pulmonary Functional Magnetic Resonance Imaging : Asthma Temporal–Spatial Maps

Sarah Svenningsen; Fumin Guo; Miranda Kirby; Stephen Choy; Andrew Wheatley; David G. McCormack; Grace Parraga

RATIONALE AND OBJECTIVES Hyperpolarized (3)He magnetic resonance imaging (MRI) previously revealed the temporal and spatial heterogeneity of ventilation defects in asthmatics, but these findings have not been used in treatment studies or to guide personalized therapy. Our objective was to exploit the temporal and spatial information inherent to (3)He MRI and develop image processing methods to generate pulmonary ventilation temporal-spatial maps that could be used to measure, optimize, and guide asthma therapy. MATERIALS AND METHODS In this proof-of-concept study, seven asthmatics provided written informed consent to an approved protocol and underwent spirometry and (3)He MRI on three occasions, each 5 ± 2 days apart. A registration and segmentation pipeline was developed to generate three-dimensional, temporal-spatial, pulmonary function maps. Briefly, (3)He ventilation images were segmented to generate ventilation masks that were coregistered and voxels classified according to their temporal behavior. This enabled the regional mapping of temporally persistent and intermittent ventilation defects that were normalized to the (1)H MRI thoracic cavity volume to generate persistent ventilation defect percent (VDPP) and intermittent ventilation defect percent (VDPI). RESULTS (3)He temporal-spatial pulmonary function maps identified temporally persistent and intermittent ventilation defects. VDP(I) was significantly greater in the posterior (P = .04) and inferior (P = .04) lung as compared to the anterior and superior lung. Persistent and intermittent ventilation defect percent were strongly correlated with forced expiratory volume in one second/forced vital capacity (VDP(P): r = -0.87, P = .01; VDP(I): r = -0.96, P = .0008). CONCLUSIONS Temporal-spatial pulmonary maps generated from (3)He MRI can be used to quantify temporally persistent and intermittent ventilation defects as asthma intermediate end points and targets for therapy.


Radiology | 2016

Pulmonary Imaging Biomarkers of Gas Trapping and Emphysema in COPD: (3)He MR Imaging and CT Parametric Response Maps.

Dante P. I. Capaldi; Nanxi Zha; Fumin Guo; Damien Pike; David G. McCormack; Miranda Kirby; Grace Parraga

PURPOSE To directly compare magnetic resonance (MR) imaging and computed tomography (CT) parametric response map (PRM) measurements of gas trapping and emphysema in ex-smokers both with and without chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS Participants provided written informed consent to a protocol that was approved by a local research ethics board and Health Canada and was compliant with the HIPAA (Institutional Review Board Reg. #00000940). The prospectively planned study was performed from March 2014 to December 2014 and included 58 ex-smokers (mean age, 73 years ± 9) with (n = 32; mean age, 74 years ± 7) and without (n = 26; mean age, 70 years ± 11) COPD. MR imaging (at functional residual capacity plus 1 L), CT (at full inspiration and expiration), and spirometry or plethysmography were performed during a 2-hour visit to generate ventilation defect percent (VDP), apparent diffusion coefficient (ADC), and PRM gas trapping and emphysema measurements. The relationships between pulmonary function and imaging measurements were determined with analysis of variance (ANOVA), Holm-Bonferroni corrected Pearson correlations, multivariate regression modeling, and the spatial overlap coefficient (SOC). RESULTS VDP, ADC, and PRM gas trapping and emphysema (ANOVA, P < .001) measurements were significantly different in healthy ex-smokers than they were in ex-smokers with COPD. In all ex-smokers, VDP was correlated with PRM gas trapping (r = 0.58, P < .001) and with PRM emphysema (r = 0.68, P < .001). VDP was also significantly correlated with PRM in ex-smokers with COPD (gas trapping: r = 0.47 and P = .03; emphysema: r = 0.62 and P < .001) but not in healthy ex-smokers. In a multivariate model that predicted PRM gas trapping, the forced expiratory volume in 1 second normalized to the forced vital capacity (standardized coefficients [βS] = -0.69, P = .001) and airway wall area percent (βS = -0.22, P = .02) were significant predictors. PRM emphysema was predicted by the diffusing capacity for carbon monoxide (βS = -0.29, P = .03) and VDP (βS = 0.41, P = .001). Helium 3 ADC values were significantly elevated in PRM gas-trapping regions (P < .001). The spatial relationship for ventilation defects was significantly greater with PRM gas trapping than with PRM emphysema in patients with mild (for gas trapping, SOC = 36% ± 28; for emphysema, SOC = 1% ± 2; P = .001) and moderate (for gas trapping, SOC = 34% ± 28; for emphysema, SOC = 7% ± 15; P = .006) COPD. For severe COPD, the spatial relationship for ventilation defects with PRM emphysema (SOC = 64% ± 30) was significantly greater than that for PRM gas trapping (SOC = 36% ± 18; P = .01). CONCLUSION In all ex-smokers, ADC values were significantly elevated in regions of PRM gas trapping, and VDP was quantitatively and spatially related to both PRM gas trapping and PRM emphysema. In patients with mild to moderate COPD, VDP was related to PRM gas trapping, whereas in patients with severe COPD, VDP correlated with both PRM gas trapping and PRM emphysema.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2016

Oscillatory Positive Expiratory Pressure in Chronic Obstructive Pulmonary Disease

Sarah Svenningsen; Gregory A. Paulin; Khadija Sheikh; Fumin Guo; Aasim Hasany; Miranda Kirby; Roya Etemad Rezai; David G. McCormack; Grace Parraga

Abstract Evidence-based guidance for the use of airway clearance techniques (ACT) in chronic obstructive pulmonary disease (COPD) is lacking in-part because well-established measurements of pulmonary function such as the forced expiratory volume in 1s (FEV1) are relatively insensitive to ACT. The objective of this crossover study was to evaluate daily use of an oscillatory positive expiratory pressure (oPEP) device for 21–28 days in COPD patients who were self-identified as sputum-producers or non-sputum-producers. COPD volunteers provided written informed consent to daily oPEP use in a randomized crossover fashion. Participants completed baseline, crossover and study-end pulmonary function tests, St. Georges Respiratory Questionnaire (SGRQ), Patient Evaluation Questionnaire (PEQ), Six-Minute Walk Test and 3He magnetic resonance imaging (MRI) for the measurement of ventilation abnormalities using the ventilation defect percent (VDP). Fourteen COPD patients, self-identified as sputum-producers and 13 COPD-non-sputum-producers completed the study. Post-oPEP, the PEQ-ease-bringing-up-sputum was improved for sputum-producers (p = 0.005) and non-sputum-producers (p = 0.04), the magnitude of which was greater for sputum-producers (p = 0.03). There were significant post-oPEP improvements for sputum-producers only for FVC (p = 0.01), 6MWD (p = 0.04), SGRQ total score (p = 0.01) as well as PEQ-patient-global-assessment (p = 0.02). Clinically relevant post-oPEP improvements for PEQ-ease-bringing-up-sputum/PEQ-patient-global-assessment/SGRQ/VDP were observed in 8/7/9/6 of 14 sputum-producers and 2/0/3/3 of 13 non-sputum-producers. The post-oPEP change in 3He MRI VDP was related to the change in PEQ-ease-bringing-up-sputum (r = 0.65, p = 0.0004) and FEV1 (r = –0.50, p = 0.009). In COPD patients with chronic sputum production, PEQ and SGRQ scores, FVC and 6MWD improved post-oPEP. FEV1 and PEQ-ease-bringing-up-sputum improvements were related to improved ventilation providing mechanistic evidence to support oPEP use in COPD. Clinical Trials # NCT02282189 and NCT02282202.


Physiological Reports | 2016

Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics

Del Leary; Sarah Svenningsen; Fumin Guo; Swati A. Bhatawadekar; Grace Parraga; Geoffrey N. Maksym

In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well‐understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquired MRI ventilation defect maps, forced expiratory volume in one‐second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs). MRI ventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to the MRI ventilation defects. The relationships for VDP with Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14 (r = 0.91, P < 0.0001) and Rrs>9 (r = 0.88, P < 0.0001) were significantly stronger (P = 0.005; P = 0.03, respectively) than with FEV1 (r = −0.68, P = 0.0001). The slopes for the relationship of VDP with simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for the VDP‐Xrs0.2 relationship was largest, suggesting that VDP was dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild‐moderate asthmatics.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2016

Regional Heterogeneity of Chronic Obstructive Pulmonary Disease Phenotypes: Pulmonary (3)He Magnetic Resonance Imaging and Computed Tomography.

Damien Pike; Miranda Kirby; Rachel L. Eddy; Fumin Guo; Dante P. I. Capaldi; Alexei Ouriadov; David G. McCormack; Grace Parraga

Abstract Pulmonary ventilation may be visualized and measured using hyperpolarized 3He magnetic resonance imaging (MRI) while emphysema and its distribution can be quantified using thoracic computed tomography (CT). Our objective was to phenotype ex-smokers with COPD based on the apical-to-basal distribution of ventilation abnormalities and emphysema to better understand how these phenotypes change regionally as COPD progresses. We evaluated 100 COPD ex-smokers who provided written informed consent and underwent spirometry, CT and 3He MRI. 3He MRI ventilation imaging was used to quantify the ventilation defect percent (VDP) for whole-lung and individual lung lobes. Regional VDP was used to generate the apical-lung (AL)-to-basal-lung (BL) difference (ΔVDP); a positive ΔVDP indicated AL-predominant and negative ΔVDP indicated BL-predominant ventilation defects. Emphysema was quantified using the relative-area-of-the-lung ≤−950HU (RA950) of the CT density histogram for whole-lung and individual lung lobes. The AL-to-BL RA950 difference (ΔRA950) was generated with a positive ΔRA950 indicating AL-predominant emphysema and a negative ΔRA950 indicating BL-predominant emphysema. Seventy-two ex-smokers reported BL-predominant MRI ventilation defects and 71 reported AL-predominant CT emphysema. BL-predominant ventilation defects (AL/BL: GOLD I = 18%/82%, GOLD II = 24%/76%) and AL-predominant emphysema (AL/BL: GOLD I = 84%/16%, GOLD II = 72%/28%) were the major phenotypes in mild-moderate COPD. In severe COPD there was a more uniform distribution for ventilation defects (AL/BL: GOLD III = 40%/60%, GOLD IV = 43%/57%) and emphysema (AL/BL: GOLD III = 64%/36%, GOLD IV = 43%/57%). Basal-lung ventilation defects predominated in mild-moderate GOLD grades, and a more homogeneous distribution of ventilation defects was observed in more advanced grade COPD; these differences suggest that over time, regional ventilation abnormalities become more homogenously distributed during disease progression.


Medical Physics | 2016

Anatomical pulmonary magnetic resonance imaging segmentation for regional structure-function measurements of asthma

Fumin Guo; Sarah Svenningsen; Rachel L. Eddy; Dante P. I. Capaldi; Khadija Sheikh; Aaron Fenster; Grace Parraga

PURPOSE Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary (1)H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary (1)H MRI. Therefore, their objective was to develop a pulmonary (1)H MRI segmentation algorithm to provide regional measurements with the precision and speed required to support clinical studies. METHODS The authors developed a method to segment the left and right lung from (1)H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as (1)H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, (1)H MRI was resampled into ∼3 × 3 × 3 mm(3) isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary (1)H MR images in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. RESULTS For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) was 83% ± 7% and FEV1 was 86 ± 9%pred. For 15 severe, poorly controlled asthmatics, FEV1/FV C = 66% ± 17% and FEV1 = 72 ± 27%pred. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. CONCLUSIONS This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.


medical image computing and computer assisted intervention | 2014

3D Prostate TRUS Segmentation Using Globally Optimized Volume-Preserving Prior

Wu Qiu; Martin Rajchl; Fumin Guo; Yue Sun; Eranga Ukwatta; Aaron Fenster; Jing Yuan

An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.

Collaboration


Dive into the Fumin Guo's collaboration.

Top Co-Authors

Avatar

Grace Parraga

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Sarah Svenningsen

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Dante P. I. Capaldi

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

David G. McCormack

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Aaron Fenster

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Khadija Sheikh

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Damien Pike

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Miranda Kirby

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rachel L. Eddy

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Jing Yuan

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge