Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuminori Tsuruta is active.

Publication


Featured researches published by Fuminori Tsuruta.


Journal of Biological Chemistry | 2011

Ubiquitin ligase activity of Cul3-KLHL7 protein is attenuated by autosomal dominant retinitis pigmentosa causative mutation.

Yu Kigoshi; Fuminori Tsuruta; Tomoki Chiba

Substrate-specific protein degradation mediated by the ubiquitin proteasome system (UPS) is crucial for the proper function of the cell. Proteins are specifically recognized and ubiquitinated by the ubiquitin ligases (E3s) and are then degraded by the proteasome. BTB proteins act as the substrate recognition subunit that recruits their cognate substrates to the Cullin 3-based multisubunit E3s. Recently, it was reported that missense mutations in KLHL7, a BTB-Kelch protein, are related to autosomal dominant retinitis pigmentosa (adRP). However, the involvement of KLHL7 in the UPS and the outcome of the adRP causative mutations were unknown. In this study, we show that KLHL7 forms a dimer, assembles with Cul3 through its BTB and BACK domains, and exerts E3 activity. Lys-48-linked but not Lys-63-linked polyubiquitin chain co-localized with KLHL7, which increased upon proteasome inhibition suggesting that KLHL7 mediates protein degradation via UPS. An adRP-causative missense mutation in the BACK domain of KLHL7 attenuated only the Cul3 interaction but not dimerization. Nevertheless, the incorporation of the mutant as a heterodimer in the Cul3-KLHL7 complex diminished the E3 ligase activity. Together, our results suggest that KLHL7 constitutes a Cul3-based E3 and that the disease-causing mutation inhibits ligase activity in a dominant negative manner, which may lead to the inappropriate accumulation of the substrates targeted for proteasomal degradation.


PLOS ONE | 2013

Brap2 Regulates Temporal Control of NF-κB Localization Mediated by Inflammatory Response

Osamu Takashima; Fuminori Tsuruta; Yu Kigoshi; Shingo Nakamura; Jaehyun Kim; Megumi C. Katoh; Tomomi Fukuda; Kenji Irie; Tomoki Chiba

Nuclear factor-kappaB (NF-κB) is critical for the expression of multiple genes involved in inflammatory responses and cellular survival. NF-κB is normally sequestered in the cytoplasm through interaction with an inhibitor of NF-κB (IκB), but inflammatory stimulation induces proteasomal degradation of IκB, followed by NF-κB nuclear translocation. The degradation of IκB is mediated by a SCF (Skp1-Cullin1-F-box protein)-type ubiquitin ligase complex that is post-translationaly modified by a ubiquitin-like molecule Nedd8. In this study, we report that BRCA1-associated protein 2 (Brap2) is a novel Nedd8-binding protein that interacts with SCF complex, and is involved in NF-κB translocation following TNF-α stimulation. We also found a putative neddylation site in Brap2 associated with NF-κB activity. Our findings suggest that Brap2 is a novel modulator that associates with SCF complex and controls TNF-α-induced NF-κB nuclear translocation.


PLOS ONE | 2013

Myeloma Overexpressed 2 (Myeov2) Regulates L11 Subnuclear Localization through Nedd8 Modification

Manato Ebina; Fuminori Tsuruta; Megumi C. Katoh; Yu Kigoshi; Akie Someya; Tomoki Chiba

Nucleolus is a dynamic structure that controls biogenesis of ribosomal RNA and senses cellular stresses. Nucleolus contains a number of proteins including ribosomal proteins that conduct cellular stresses to downstream signaling such as p53 pathway. Recently, it has been reported that modification by a ubiquitin-like molecule, Nedd8, regulates subnuclear localization of ribosomal protein L11. Most of L11 is normally localized and neddylated in nucleolus. However, cellular stress triggers deneddylation and redistribution of L11, and subsequent activation of p53. Although Nedd8 modification is thought to be important for L11 localization, the mechanism of how neddylation of L11 is regulated remains largely unknown. Here, we show that Myeloma overexpressed 2 (Myeov2) controls L11 localization through down-regulation of Nedd8 modification. Expression of Myeov2 reduced neddylation of proteins including L11. We also found that Myeov2 associates with L11 and withholds L11 in nucleoplasm. Although Myeov2 interacted with a Nedd8 deconjugation enzyme COP9 signalosome, L11 deneddylation was mediated by another deneddylase Nedp1, independently of Myeov2. Finally, p53 transcriptional activity is upregulated by Myeov2 expression. These data demonstrate that Myeov2 hampers L11 neddylation through their interactions and confines L11 to nucleoplasm to modulate nucleolar integrity. Our findings provide a novel link between oncogenic stress and p53 pathway and may shed light on the protective mechanism against cancer.


Journal of Biochemistry | 2016

KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition

Kousuke Haratake; Akitsugu Sato; Fuminori Tsuruta; Tomoki Chiba

Many cellular stresses cause damages of intracellular proteins, which are eventually degraded by the ubiquitin and proteasome system. The proteasome is a multicatalytic protease complex composed of 20S core particle and the proteasome activators that regulate the proteasome activity. Extracellular mutants 29 (Ecm29) is a 200 kDa protein encoded by KIAA0368 gene, associates with the proteasome, but its role is largely unknown. Here, we generated KIAA0368-deficient mice and investigated the function of Ecm29 in stress response. KIAA0368-deficient mice showed normal peptidase activity and proteasome formation at normal condition. Under stressed condition, 26S proteasome dissociates in wild-type cells, but not in KIAA0368(-/-) cells. This response was correlated with efficient degradation of damaged proteins and resistance to oxidative stress of KIAA0368(-/-) cells. Thus, Ecm29 is involved in the dissociation process of 26S proteasome, providing clue to analyse the mechanism of proteasomal degradation under various stress condition.


Biochemical and Biophysical Research Communications | 2016

USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression.

Kousuke Fukagai; Tsuyoshi Waku; A.M. Masudul Azad Chowdhury; Kaori Kubo; Mariko Matsumoto; Hiroki Kato; Tohru Natsume; Fuminori Tsuruta; Tomoki Chiba; Hiroaki Taniguchi

The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and β-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear. Here, we report that USP15 (Ubiquitin-Specific Protease 15) activates Nrf1 in the nucleus by stabilizing it through deubiquitination. We first identified USP15 as an Nrf1-associated factor through proteome analysis. USP15 physically interacts with Nrf1, and it markedly stabilizes Nrf1 by removing its ubiquitin moieties. USP15 activates the Nrf1-mediated expression of a proteasome gene luciferase reporter and endogenous proteasome activity. The siRNA-mediated knockdown of USP15 diminishes the Nrf1-induced proteasome gene expression in response to proteasome inhibition. These results uncover a new regulatory mechanism that USP15 activates Nrf1 against the β-TrCP inhibition to maintain proteostasis.


Biochemical and Biophysical Research Communications | 2017

CACUL1/CAC1 attenuates p53 activity through PML post-translational modification

Tomomi Fukuda; Yu Kigoshi-Tansho; Takao Naganuma; Akira Kazaana; Tomomi Okajima; Fuminori Tsuruta; Tomoki Chiba

Promyelocytic leukaemia (PML) is a tumor suppressor protein covalently conjugated with SUMO family proteins, leading to the formation of PML nuclear bodies (NBs). PML-NBs provide a platform for efficient posttranslational modification of targets and protein-protein interaction, contributing to the adjustment of gene expression and chromatin integrity. Although PML SUMOylation is thought to play important roles in diverse cellular functions, the control mechanisms of adequate modification levels have remained unsolved. Here, we report that Cullin-related protein CACUL1/CAC1 (CACUL1) inhibits PML posttranslational modification. CACUL1 interacts with PML and suppresses PML SUMOylation, leading to the regulation of PML-NB size in the nucleus. We also found that Ubc9, a SUMO-conjugating enzyme, binds to CACUL1 and antagonizes the interaction between CACUL1 and PML. Furthermore, CACUL1 attenuates p53 transcriptional activity. These data suggest that CACUL1 is a novel regulator that negatively controls p53 activity through the regulation of PML SUMOylation.


Scientific Reports | 2015

CACUL1/CAC1 Regulates the Antioxidant Response by Stabilizing Nrf2.

Yu Kigoshi; Tomomi Fukuda; Tomoyuki Endo; Nami Hayasaka; Shun-ichiro Iemura; Toru Natsume; Fuminori Tsuruta; Tomoki Chiba

Nrf2 is the pre-dominant transcription activator responsible for coordinated up-regulation of ARE-driven antioxidant and detoxification genes. The activity of Nrf2 is tightly regulated at basal levels through its ubiquitination by Cul3-Keap1 and consequential degradation. Upon exposure to stress, the Cul3-Keap1 ligase is inhibited, leading to Nrf2 stabilization and activation. Here we describe CACUL1/CAC1 as a positive regulator of the Nrf2 pathway. We found that CACUL1 is up-regulated by Nrf2-activating oxidative stresses in cells and in mice. The association of CACUL1 with the Cul3-Keap1 complex led to a decrease in Nrf2 ubiquitination levels at non-stressed as well as stressed conditions, and sensitized cells for higher Nrf2 activation. Furthermore, CACUL1 knock-down led to a decrease in Nrf2 activity and cell viability under stress. Our results show that CACUL1 is a regulator of Nrf2 ubiquitination, adding another regulatory layer to the Nrf2 antioxidant stress response.


Biochemical and Biophysical Research Communications | 2017

KLHL7 promotes TUT1 ubiquitination associated with nucleolar integrity: Implications for retinitis pigmentosa

Jaehyun Kim; Fuminori Tsuruta; Tomomi Okajima; Sarasa Yano; Ban Sato; Tomoki Chiba

Kelch-like protein 7 (KLHL7) is a component of Cul3-based Cullin-RING ubiquitin ligase. Recent studies have revealed that mutations in klhl7 gene cause several disorders, such as retinitis pigmentosa (RP). Although KLHL7 is considered to be crucial for regulating the protein homeostasis, little is known about its biological functions. In this study, we report that KLHL7 increases terminal uridylyl transferase 1 (TUT1) ubiquitination involved in nucleolar integrity. TUT1 is normally localized in nucleolus; however, expression of KLHL7 facilitates a vulnerability of nucleolar integrity, followed by a decrease of TUT1 localization in nucleolus. On the other hand, pathogenic KLHL7 mutants, which causes an onset of RP, have little effect on both nucleolar integrity and TUT1 localization. Finally, KLHL7 increases TUT1 ubiquitination levels. Taken together, these results imply that KLHL7 is a novel regulator of nucleolus associated with TUT1 ubiquitination. Our study may provide a valuable information to elucidate a pathogenic mechanism of RP.


Molecular and Cellular Biology | 2016

SCFFbl12 Increases p21Waf1/Cip1 Expression Level through Atypical Ubiquitin Chain Synthesis

Fuminori Tsuruta; Ai Takebe; Kousuke Haratake; Yoshinori Kanemori; Jaehyun Kim; Tomoyuki Endo; Yu Kigoshi; Tomomi Fukuda; Hatsumi Miyahara; Manato Ebina; Tadashi Baba; Tomoki Chiba

ABSTRACT The cyclin-dependent kinase (CDK) inhibitor p21 is an unstructured protein regulated by multiple turnover pathways. p21 abundance is tightly regulated, and its defect causes tumor development. However, the mechanisms that underlie the control of p21 level are not fully understood. Here, we report a novel mechanism by which a component of the SCF ubiquitin ligase, Fbl12, augments p21 via the formation of atypical ubiquitin chains. We found that Fbl12 binds and ubiquitinates p21. Unexpectedly, Fbl12 increases the expression level of p21 by enhancing the mixed-type ubiquitination, including not only K48- but also K63-linked ubiquitin chains, followed by promotion of binding between p21 and CDK2. We also found that proteasome activator PA28γ attenuates p21 ubiquitination by interacting with Fbl12. In addition, UV irradiation induces a dissociation of p21 from Fbl12 and decreases K63-linked ubiquitination, leading to p21 degradation. These data suggest that Fbl12 is a key factor that maintains adequate intracellular concentration of p21 under normal conditions. Our finding may provide a novel possibility that p21s fate is governed by diverse ubiquitin chains.


Biochemistry and biophysics reports | 2015

The intronic region of Fbxl12 functions as an alternative promoter regulated by UV irradiation

Fuminori Tsuruta; Jaehyun Kim; Tomomi Fukuda; Yu Kigoshi; Tomoki Chiba

The ubiquitin ligases, SCF complexes, consist of Cul1, Skp1, Rbx1 and the substrate recognition components F-box proteins. Previous studies have reported that one of these F-box proteins, Fbl12, which is produced by Fbxl12 gene, regulates both cell cycle and differentiation. In this paper, we show that the intronic region of Fbxl12 gene acts as an alternative promoter and induces expression of a short form of Fbl12 that lacks F-box domain (Fbl12ΔF). We also found that UV irradiation increases Fbl12ΔF mRNA in cells. Finally, Fbl12ΔF may promote the subcellular localization of Fbl12 from nucleus to cytoplasm through their binding. Our data provide the possibility that Fbl12ΔF induced by alternative promoter controls the SCFFbl12 activity in response to UV stimulation.

Collaboration


Dive into the Fuminori Tsuruta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge