Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumio Matsuda is active.

Publication


Featured researches published by Fumio Matsuda.


Journal of Mass Spectrometry | 2010

MassBank: a public repository for sharing mass spectral data for life sciences.

Hisayuki Horai; Masanori Arita; Shigehiko Kanaya; Yoshito Nihei; Tasuku Ikeda; Kazuhiro Suwa; Yuya Ojima; Kenichi Tanaka; Satoshi Tanaka; Ken Aoshima; Yoshiya Oda; Yuji Kakazu; Miyako Kusano; Takayuki Tohge; Fumio Matsuda; Yuji Sawada; Masami Yokota Hirai; Hiroki Nakanishi; Kazutaka Ikeda; Naoshige Akimoto; Takashi Maoka; Hiroki Takahashi; Takeshi Ara; Nozomu Sakurai; Hideyuki Suzuki; Daisuke Shibata; Steffen Neumann; Takashi Iida; Ken Tanaka; Kimito Funatsu

MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry (EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MS(n) data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10,286 volatile natural and synthetic compounds, and 3045 ESI-MS(2) data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS(2) data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS(2) data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21-23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.


Annual Review of Plant Biology | 2010

Metabolomics for Functional Genomics, Systems Biology, and Biotechnology

Kazuki Saito; Fumio Matsuda

Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.


The Plant Cell | 2008

Comprehensive Flavonol Profiling and Transcriptome Coexpression Analysis Leading to Decoding Gene–Metabolite Correlations in Arabidopsis

Keiko Yonekura-Sakakibara; Takayuki Tohge; Fumio Matsuda; Ryo Nakabayashi; Hiromitsu Takayama; Rie Niida; Akiko Watanabe-Takahashi; Eri Inoue; Kazuki Saito

To complete the metabolic map for an entire class of compounds, it is essential to identify gene–metabolite correlations of a metabolic pathway. We used liquid chromatography–mass spectrometry (LC-MS) to identify the flavonoids produced by Arabidopsis thaliana wild-type and flavonoid biosynthetic mutant lines. The structures of 15 newly identified and eight known flavonols were deduced by LC-MS profiling of these mutants. Candidate genes presumably involved in the flavonoid pathway were delimited by transcriptome coexpression network analysis using public databases, leading to the detailed analysis of two flavonoid pathway genes, UGT78D3 (At5g17030) and RHM1 (At1g78570). The levels of flavonol 3-O-arabinosides were reduced in ugt78d3 knockdown mutants, suggesting that UGT78D3 is a flavonol arabinosyltransferase. Recombinant UGT78D3 protein could convert quercetin to quercetin 3-O-arabinoside. The strict substrate specificity of UGT78D3 for flavonol aglycones and UDP-arabinose indicate that UGT78D3 is a flavonol arabinosyltransferase. A comparison of flavonol profile in RHM knockout mutants indicated that RHM1 plays a major role in supplying UDP-rhamnose for flavonol modification. The rate of flavonol 3-O-glycosylation is more affected than those of 7-O-glycosylation by the supply of UDP-rhamnose. The precise identification of flavonoids in conjunction with transcriptomics thus led to the identification of a gene function and a more complete understanding of a plant metabolic network.


The Plant Cell | 2009

Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

Grit Rubin; Takayuki Tohge; Fumio Matsuda; Kazuki Saito; Wolf-Rüdiger Scheible

Nitrogen (N) and nitrate (NO3−) per se regulate many aspects of plant metabolism, growth, and development. N/NO3− also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3−-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO3− strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO3−-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO3− uptake and assimilation, resulting in altered NO3− content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.


Plant Journal | 2014

Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids

Ryo Nakabayashi; Keiko Yonekura-Sakakibara; Kaoru Urano; Makoto Suzuki; Yutaka Yamada; Tomoko Nishizawa; Fumio Matsuda; Mikiko Kojima; Hitoshi Sakakibara; Kazuo Shinozaki; Anthony J. Michael; Takayuki Tohge; Mami Yamazaki; Kazuki Saito

The notion that plants use specialized metabolism to protect against environmental stresses needs to be experimentally proven by addressing the question of whether stress tolerance by specialized metabolism is directly due to metabolites such as flavonoids. We report that flavonoids with radical scavenging activity mitigate against oxidative and drought stress in Arabidopsis thaliana. Metabolome and transcriptome profiling and experiments with oxidative and drought stress in wild-type, single overexpressors of MYB12/PFG1 (PRODUCTION OF FLAVONOL GLYCOSIDES1) or MYB75/PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), double overexpressors of MYB12 and PAP1, transparent testa4 (tt4) as a flavonoid-deficient mutant, and flavonoid-deficient MYB12 or PAP1 overexpressing lines (obtained by crossing tt4 and the individual MYB overexpressor) demonstrated that flavonoid overaccumulation was key to enhanced tolerance to such stresses. Antioxidative activity assays using 2,2-diphenyl-1-picrylhydrazyl, methyl viologen, and 3,3′-diaminobenzidine clearly showed that anthocyanin overaccumulation with strong in vitro antioxidative activity mitigated the accumulation of reactive oxygen species in vivo under oxidative and drought stress. These data confirm the usefulness of flavonoids for enhancing both biotic and abiotic stress tolerance in crops.


Plant Journal | 2009

MS/MS spectral tag‐based annotation of non‐targeted profile of plant secondary metabolites

Fumio Matsuda; Keiko Yonekura-Sakakibara; Rie Niida; Takashi Kuromori; Kazuo Shinozaki; Kazuki Saito

The MS/MS spectral tag (MS2T) library-based peak annotation procedure was developed for informative non-targeted metabolic profiling analysis using LC-MS. An MS2T library of Arabidopsis metabolites was created from a set of MS/MS spectra acquired using the automatic data acquisition function of the mass spectrometer. By using this library, we obtained structural information for the detected peaks in the metabolic profile data without performing additional MS/MS analysis; this was achieved by searching for the corresponding MS2T accession in the library. In the case of metabolic profile data for Arabidopsis tissues containing more than 1000 peaks, approximately 50% of the peaks were tagged by MS2Ts, and 90 peaks were identified or tentatively annotated with metabolite information by searching the metabolite databases and manually interpreting the MS2Ts. A comparison of metabolic profiles among the Arabidopsis tissues revealed that many unknown metabolites accumulated in a tissue-specific manner, some of which were deduced to be unusual Arabidopsis metabolites based on the MS2T data. Candidate genes responsible for these biosyntheses could be predicted by projecting the results to the transcriptome data. The method was also used for metabolic phenotyping of a subset of Ds transposon-inserted lines of Arabidopsis, resulting in clarification of the functions of reported genes involved in glycosylation of flavonoids. Thus, non-targeted metabolic profiling analysis using MS2T annotation methods could prove to be useful for investigating novel functions of secondary metabolites in plants.


The Plant Cell | 2009

A Chloroplastic UDP-Glucose Pyrophosphorylase from Arabidopsis Is the Committed Enzyme for the First Step of Sulfolipid Biosynthesis

Yozo Okazaki; Mie Shimojima; Yuji Sawada; Kiminori Toyooka; Tomoko Narisawa; Keiichi Mochida; Hironori Tanaka; Fumio Matsuda; Akiko Hirai; Masami Yokota Hirai; Hiroyuki Ohta; Kazuki Saito

Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for sulfolipid biosynthesis is described. Transcriptome coexpression analysis demonstrated highly correlated expression of UGP3 with known genes for sulfolipid biosynthesis in Arabidopsis thaliana. Liquid chromatography–mass spectrometry analysis of leaf lipids in two Arabidopsis ugp3 mutants revealed that no sulfolipid was accumulated in these mutants, indicating the participation of UGP3 in sulfolipid biosynthesis. From the deduced amino acid sequence, UGP3 was presumed to be a UDP-glucose pyrophosphorylase (UGPase) involved in the generation of UDP-glucose, serving as the precursor of the polar head of sulfolipid. Recombinant UGP3 was able to catalyze the formation of UDP-glucose from glucose-1-phosphate and UTP. A transient assay using fluorescence fusion proteins and UGPase activity in isolated chloroplasts indicated chloroplastic localization of UGP3. The transcription level of UGP3 was increased by phosphate starvation. A comparative genomics study on UGP3 homologs across different plant species suggested the structural and functional conservation of the proteins and, thus, a committing role for UGP3 in sulfolipid synthesis.


Plant Journal | 2011

Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV‐B light

Miyako Kusano; Takayuki Tohge; Atsushi Fukushima; Makoto Kobayashi; Naomi Hayashi; Hitomi Otsuki; Youichi Kondou; Hiroto Goto; Mika Kawashima; Fumio Matsuda; Rie Niida; Minami Matsui; Kazuki Saito; Alisdair R. Fernie

Because of ever-increasing environmental deterioration it is likely that the influx of UV-B radiation (280-320 nm) will increase as a result of the depletion of stratospheric ozone. Given this fact it is essential that we better understand both the rapid and the adaptive responses of plants to UV-B stress. Here, we compare the metabolic responses of wild-type Arabidopsis with that of mutants impaired in flavonoid (transparent testa 4, tt4; transparent testa 5, tt5) or sinapoyl-malate (sinapoylglucose accumulator 1, sng1) biosynthesis, exposed to a short 24-h or a longer 96-h exposure to this photo-oxidative stress. In control experiments we subjected the genotypes to long-day conditions as well as to 24- and 96-h treatments of continuous light. Following these treatments we evaluated the dynamic response of metabolites including flavonoids, sinapoyl-malate precursors and ascorbate, which are well known to play a role in cellular protection from UV-B stress, as well as a broader range of primary metabolites, in an attempt to more fully comprehend the metabolic shift following the cellular perception of this stress. Our data reveals that short-term responses occur only at the level of primary metabolites, suggesting that these effectively prime the cell to facilitate the later production of UV-B-absorbing secondary metabolites. The combined results of these studies together with transcript profiles using samples irradiated by 24-h UV-B light are discussed in the context of current models concerning the metabolic response of plants to the stress imposed by excessive UV-B irradiation.


Plant Physiology | 2010

AtMetExpress development: a phytochemical atlas of Arabidopsis development.

Fumio Matsuda; Masami Yokota Hirai; Eriko Sasaki; Kenji Akiyama; Keiko Yonekura-Sakakibara; Nicholas J. Provart; Tetsuya Sakurai; Yukihisa Shimada; Kazuki Saito

Plants possess many metabolic genes for the production of a wide variety of phytochemicals in a tissue-specific manner. However, the metabolic systems behind the diversity and tissue-dependent regulation still remain unknown due to incomplete characterization of phytochemicals produced in a single plant species. Thus, having a metabolome dataset in addition to the genome and transcriptome information resources would enrich our knowledge of plant secondary metabolism. Here we analyzed phytochemical accumulation during development of the model plant Arabidopsis (Arabidopsis thaliana) using liquid chromatography-mass spectrometry in samples covering many growth stages and organs. We also obtained tandem mass spectrometry spectral tags of many metabolites as a resource for elucidation of metabolite structure. These are part of the AtMetExpress metabolite accumulation atlas. Based on the dataset, we detected 1,589 metabolite signals from which the structures of 167 metabolites were elucidated. The integrated analyses with transcriptome data demonstrated that Arabidopsis produces various phytochemicals in a highly tissue-specific manner, which often accompanies the expression of key biosynthesis-related genes. We also found that a set of biosynthesis-related genes is coordinately expressed among the tissues. These data suggested that the simple mode of regulation, transcript to metabolite, is an origin of the dynamics and diversity of plant secondary metabolism.


Plant Journal | 2008

The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production

Atsushi Ishihara; Yumi Hashimoto; Chihiro Tanaka; Joseph G. Dubouzet; Takahito Nakao; Fumio Matsuda; Takaaki Nishioka; Hisashi Miyagawa; Kyo Wakasa

The upregulation of the tryptophan (Trp) pathway in rice leaves infected by Bipolaris oryzae was indicated by: (i) enhanced enzyme activity of anthranilate synthase (AS), which regulates metabolic flux in the Trp pathway; (ii) elevated levels of the AS (OASA2, OASB1, and OASB2) transcripts; and (iii) increases in the contents of anthranilate, indole, and Trp. The measurement of the contents of Trp-derived metabolites by high-performance liquid chromatography coupled with tandem mass spectrometry revealed that serotonin and its hydroxycinnamic acid amides were accumulated in infected leaves. Serotonin accumulation was preceded by a transient increase in the tryptamine content and by marked activation of Trp decarboxylase, indicating that enhanced Trp production is linked to the formation of serotonin from Trp via tryptamine. Feeding of radiolabeled serotonin to inoculated leaves demonstrated that serotonin is incorporated into the cell walls of lesion tissue. The leaves of a propagating-type lesion mimic mutant (sl, Sekiguchi lesion) lacked both serotonin production and deposition of unextractable brown material at the infection sites, and showed increased susceptibility to B. oryzae infection. Treating the mutant with serotonin restored deposition of brown material at the lesion site. In addition, the serotonin treatment suppressed the growth of fungal hyphae in the leaf tissues of the sl mutant. These findings indicated that the activation of the Trp pathway is involved in the establishment of effective physical defenses by producing serotonin in rice leaves.

Collaboration


Dive into the Fumio Matsuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyo Wakasa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge