Fumitaka Inoue
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fumitaka Inoue.
Nature Genetics | 2013
Robin P. Smith; Leila Taher; Rupali P Patwardhan; Mee J. Kim; Fumitaka Inoue; Jay Shendure; Ivan Ovcharenko; Nadav Ahituv
Despite continual progress in the cataloging of vertebrate regulatory elements, little is known about their organization and regulatory architecture. Here we describe a massively parallel experiment to systematically test the impact of copy number, spacing, combination and order of transcription factor binding sites on gene expression. A complex library of ∼5,000 synthetic regulatory elements containing patterns from 12 liver-specific transcription factor binding sites was assayed in mice and in HepG2 cells. We find that certain transcription factors act as direct drivers of gene expression in homotypic clusters of binding sites, independent of spacing between sites, whereas others function only synergistically. Heterotypic enhancers are stronger than their homotypic analogs and favor specific transcription factor binding site combinations, mimicking putative native enhancers. Exhaustive testing of binding site permutations suggests that there is flexibility in binding site order. Our findings provide quantitative support for a flexible model of regulatory element activity and suggest a framework for the design of synthetic tissue-specific enhancers.
Genomics | 2015
Fumitaka Inoue; Nadav Ahituv
Enhancers control the timing, location and expression levels of their target genes. Nucleotide variation in enhancers has been shown to lead to numerous phenotypes, including human disease. While putative enhancer sequences and nucleotide variation within them can now be detected in a rapid manner using various genomic technologies, the understanding of the functional consequences of these variants still remains largely unknown. Massively parallel reporter assays (MPRAs) can overcome this hurdle by providing the ability to test thousands of sequences and nucleotide variants within them for enhancer activity en masse. Here, we describe this technology and specifically focus on how it is being used to obtain an increased understanding of enhancer regulatory code and grammar.
Genome Research | 2017
Fumitaka Inoue; Martin Kircher; Beth Martin; Gregory M. Cooper; Daniela M. Witten; Michael T. McManus; Nadav Ahituv; Jay Shendure
Candidate enhancers can be identified on the basis of chromatin modifications, the binding of chromatin modifiers and transcription factors and cofactors, or chromatin accessibility. However, validating such candidates as bona fide enhancers requires functional characterization, typically achieved through reporter assays that test whether a sequence can increase expression of a transcriptional reporter via a minimal promoter. A longstanding concern is that reporter assays are mainly implemented on episomes, which are thought to lack physiological chromatin. However, the magnitude and determinants of differences in cis-regulation for regulatory sequences residing in episomes versus chromosomes remain almost completely unknown. To address this systematically, we developed and applied a novel lentivirus-based massively parallel reporter assay (lentiMPRA) to directly compare the functional activities of 2236 candidate liver enhancers in an episomal versus a chromosomally integrated context. We find that the activities of chromosomally integrated sequences are substantially different from the activities of the identical sequences assayed on episomes, and furthermore are correlated with different subsets of ENCODE annotations. The results of chromosomally based reporter assays are also more reproducible and more strongly predictable by both ENCODE annotations and sequence-based models. With a linear model that combines chromatin annotations and sequence information, we achieve a Pearsons R2 of 0.362 for predicting the results of chromosomally integrated reporter assays. This level of prediction is better than with either chromatin annotations or sequence information alone and also outperforms predictive models of episomal assays. Our results have broad implications for how cis-regulatory elements are identified, prioritized and functionally validated.
Development Growth & Differentiation | 2006
Fumitaka Inoue; Saori Nagayoshi; Satoshi Ota; Md. Ekramul Islam; Noriko Tonou-Fujimori; Yuko Odaira; Koichi Kawakami; Kyo Yamasu
Fgf8 is among the members of the fibroblast growth factor (FGF) family that play pivotal roles in vertebrate development. In the present study, the genomic DNA of the zebrafish fgf8 gene was cloned to elucidate the regulatory mechanism behind the temporally and spatially restricted expression of the gene in vertebrate embryos. Structural analysis revealed that the exon–intron organization of fgf8 is highly conserved during vertebrate evolution, from teleosts to mammals. Close inspection of the genomic sequence and reverse transcription–polymerase chain reaction analysis revealed that zebrafish fgf8 encodes two splicing variants, corresponding to Fgf8a and Fgf8b, among the four to seven splicing variants known in mammals. Misexpression of the two variants in zebrafish embryos following mRNA injection showed that both variants have dorsalizing activities on zebrafish embryos, with Fgf8b being more potent. Reporter gene analysis of the transcriptional regulation of zebrafish fgf8 suggested that its complicated expression pattern, which is considered essential for its multiple roles in development, is mediated by combinations of different regulatory regions in the upstream and downstream regions of the gene. Furthermore, comparison of the genomic sequence of fgf8 among different vertebrate species suggests that this regulatory mechanism is conserved during vertebrate evolution.
Developmental Dynamics | 2008
Mst. Shahnaj Parvin; Noriko Okuyama; Fumitaka Inoue; Md. Ekramul Islam; Atsushi Kawakami; Hiroyuki Takeda; Kyo Yamasu
Zebrafish pou5f1, also known as pou2, encodes a POU‐family transcription factor that is transiently expressed in the prospective midbrain and anterior hindbrain during gastrulation, governing brain development. In the present study, we found that the main regulatory elements reside in the proximal upstream DNA sequence from −2.2 to −0.12 kb (the −2.2/−0.1 region). The electrophoretic gel mobility shift assay (EMSA) revealed four functional octamer sequences that can associate with zebrafish Pou2/Pou5f1. The expression of mutated reporter constructs, as well as EMSA, suggested that these four octamer sequences operate in a cooperative manner to drive expression in the mid/hindbrain. We also identified a retinoic acid (RA) ‐responsive element in this proximal region, which was required to repress transcription in the posterior part of the embryo. These data provide a scheme wherein pou2/pou5f1 expression in zebrafish embryos is regulated by both an autoregulatory loop and repression by RA emanating from the posterior mesoderm. Developmental Dynamics 237:1373‐1388, 2008.
Molecular and Cellular Biology | 2012
Fumitaka Inoue; Daisuke Kurokawa; Maiko Takahashi; Shinichi Aizawa
ABSTRACT Otx2 plays essential roles in rostral brain development, and its counteraction with Gbx2 has been suggested to determine the midbrain-hindbrain boundary (MHB) in vertebrates. We previously identified the FM enhancer that is conserved among vertebrates and drives Otx2 transcription in forebrain/midbrain from the early somite stage. In this study, we found that the POU homeodomain of class III POU factors (Brn1, Brn2, Brn4, and Oct6) associates with noncanonical target sequence TAATTA in the FM enhancer. MicroRNA-mediated knockdown of Brn2 and Oct6 diminished the FM enhancer activity in anterior neural progenitor cells (NPCs) differentiated from P19 cells. The class III POU factors associate with the FM enhancer in forebrain and midbrain but not in hindbrain. We also demonstrated that the Gbx2 homeodomain recognizes the same target TAATTA in the FM enhancer, and Gbx2 associates with the FM enhancer in hindbrain. Gbx2 misexpression in the anterior NPCs repressed the FM enhancer activity and inhibited Brn2 association with the enhancer, whereas Gbx2 knockdown caused ectopic Brn2 association in the posterior NPCs. These results suggest that class III POU factors and Gbx2 share the same target site, TAATTA, in the FM enhancer and that their region-specific binding restricts Otx2 expression at the MHB.
Development | 2010
Yoko Suda; Kenji Kokura; Jun Kimura; Eriko Kajikawa; Fumitaka Inoue; Shin-Ichi Aizawa
We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3′ downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.
Developmental Biology | 2008
Fumitaka Inoue; Mst. Shahnaj Parvin; Kyo Yamasu
Fgf8 is expressed in the isthmic region of the developing brain, serving an organizing function in vertebrate embryos. We previously identified S4.2 downstream to the zebrafish fgf8 gene as a regulatory region that drives transcription in the anterior hindbrain. Here, we investigated the mechanism of fgf8 regulation by the S4.2 region during development. Reporter analyses in embryos revealed that S4.2 closely recapitulates fgf8 expression in the anteriormost hindbrain during somitogenesis. This region contains a sequence highly conserved in fgf8 of diverse vertebrates. Further analyses of S4.2 revealed a 342-bp core region composed of three subregions (#2, #3, and #4). Regions #3 and #4 drove expression broadly in the brain from the midbrain to r5 of the hindbrain, whereas a 28-bp sequence in #2 repressed ectopic expression in the midbrain and in r2 to r5. The enhancer function of S4.2 was absent in pax2a mutant embryos, while it was activated ectopically by pax2a misexpression in the hindbrain. We identified two sites in the core region that are bound by Pax2a in vitro and in vivo, the disruption of which abrogated the S4.2 activity. Thus, fgf8 expression in the anteriormost hindbrain involves activation and repression, with Pax2a as a pivotal regulator.
Mechanisms of Development | 2006
Md. Ekramul Islam; Hiroshi Kikuta; Fumitaka Inoue; Maiko Kanai; Atsushi Kawakami; Mst. Shahnaj Parvin; Hiroyuki Takeda; Kyo Yamasu
In vertebrate embryos, positioning of the boundary between the midbrain and hindbrain (MHB) and subsequent isthmus formation are dependent upon the interaction between the Otx2 and Gbx genes. In zebrafish, sequential expression of gbx1 and gbx2 in the anterior hindbrain contributes to this process, whereas in mouse embryos, a single Gbx gene (Gbx2) is responsible for MHB development. In the present study, to investigate the regulatory mechanism of gbx2 in the MHB/isthmic region of zebrafish embryos, we cloned the gene and showed that its organization is conserved among different vertebrates. Promoter analyses revealed three enhancers that direct reporter gene expression after the end of epiboly in the anterior-most hindbrain, which is a feature of the zebrafish gbx2 gene. One of the enhancers is located upstream of gbx2 (AMH1), while the other two enhancers are located downstream of gbx2 (AMH2 and AMH3). Detailed analysis of the AMH1 enhancer showed that it directs expression in the rhombomere 1 (r1) region and the dorsal thalamus, as has been shown for gbx2, whereas no expression was induced by the AMH1 enhancer in other embryonic regions in which gbx2 is expressed. The AMH1 enhancer is composed of multiple regulatory subregions that share the same spatial specificity. The most active of the regulatory subregions is a 291-bp region that contains at least two Pax2-binding sites, both of which are necessary for the function of the main component (PB1-A region) of the AMH1 enhancer. In accordance with these results, enhancer activity in the PB1-A region, as well as gbx2 expression in r1, was missing in no isthmus mutant embryos that lacked functional pax2a. In addition, we identified an upstream conserved sequence of 227bp that suppresses the enhancer activity of AMH1. Taken together, these findings suggest that gbx2 expression during the somitogenesis stage in zebrafish is regulated by a complex mechanism involving Pax2 as well as activators and suppressors in the regions flanking the gene.
Developmental Biology | 2010
Daisuke Kurokawa; Tomomi Ohmura; Hajime Ogino; Masaki Takeuchi; Ai Inoue; Fumitaka Inoue; Yoko Suda; Shin-Ichi Aizawa
In the mouse, the Otx2 gene has been shown to play essential roles in the visceral endoderm during anterior-posterior axis formation and head induction. While these are primary processes in vertebrate embryogenesis, the visceral endoderm is a tissue unique to mammals. Two enhancers (VE and CM) have been previously found to direct Otx2 expression during early embryogenesis. This study demonstrates that in anterior visceral endoderm the CM enhancer does not have an activity by itself, but enhances the activity of the VE enhancer. These two enhancers also cooperate for the activities in anterior mesendoderm and cephalic mesenchyme. Comparative studies suggest that VE enhancer function was most likely established before the divergence of sarcopterygians into Actinistia, Dipnoi and tetrapods, while the nucleotide sequence corresponding to the VE enhancer was already present in the last common ancestor of bony fishes. The CM enhancer sequence and function would have been also established in ancestral sarcopterygians. The VE/CM enhancers and their gene cascades in the ancestral sarcopterygian head organizer would then have been co-opted by amphibian deep endoderm cells and mammalian visceral endoderm cells for the head development.