Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumitaka Kugimiya is active.

Publication


Featured researches published by Fumitaka Kugimiya.


PLOS ONE | 2007

Akt1 in osteoblasts and osteoclasts controls bone remodeling.

Naohiro Kawamura; Fumitaka Kugimiya; Yasushi Oshima; Shinsuke Ohba; Toshiyuki Ikeda; Taku Saito; Yusuke Shinoda; Yosuke Kawasaki; Naoshi Ogata; Kazuto Hoshi; Toru Akiyama; William S. Chen; Nissim Hay; Kazuyuki Tobe; Takashi Kadowaki; Yoshiaki Azuma; Kozo Nakamura; Ung-il Chung; Hiroshi Kawaguchi

Bone mass and turnover are maintained by the coordinated balance between bone formation by osteoblasts and bone resorption by osteoclasts, under regulation of many systemic and local factors. Phosphoinositide-dependent serine-threonine protein kinase Akt is one of the key players in the signaling of potent bone anabolic factors. This study initially showed that the disruption of Akt1, a major Akt in osteoblasts and osteoclasts, in mice led to low-turnover osteopenia through dysfunctions of both cells. Ex vivo cell culture analyses revealed that the osteoblast dysfunction was traced to the increased susceptibility to the mitochondria-dependent apoptosis and the decreased transcriptional activity of runt-related transcription factor 2 (Runx2), a master regulator of osteoblast differentiation. Notably, our findings revealed a novel role of Akt1/forkhead box class O (FoxO) 3a/Bim axis in the apoptosis of osteoblasts: Akt1 phosphorylates the transcription factor FoxO3a to prevent its nuclear localization, leading to impaired transactivation of its target gene Bim which was also shown to be a potent proapoptotic molecule in osteoblasts. The osteoclast dysfunction was attributed to the cell autonomous defects of differentiation and survival in osteoclasts and the decreased expression of receptor activator of nuclear factor-κB ligand (RANKL), a major determinant of osteoclastogenesis, in osteoblasts. Akt1 was established as a crucial regulator of osteoblasts and osteoclasts by promoting their differentiation and survival to maintain bone mass and turnover. The molecular network found in this study will provide a basis for rational therapeutic targets for bone disorders.


PLOS ONE | 2007

GSK-3β Controls Osteogenesis through Regulating Runx2 Activity

Fumitaka Kugimiya; Hiroshi Kawaguchi; Shinsuke Ohba; Naohiro Kawamura; Makoto Hirata; Hirotaka Chikuda; Yoshiaki Azuma; James R. Woodgett; Kozo Nakamura; Ung-il Chung

Despite accumulated knowledge of various signalings regulating bone formation, the molecular network has not been clarified sufficiently to lead to clinical application. Here we show that heterozygous glycogen synthase kinase-3β (GSK-3β)-deficient mice displayed an increased bone formation due to an enhanced transcriptional activity of Runx2 by suppressing the inhibitory phosphorylation at a specific site. The cleidocranial dysplasia in heterozygous Runx2-deficient mice was significantly rescued by the genetic insufficiency of GSK-3β or the oral administration of lithium chloride, a selective inhibitor of GSK-3β. These results establish GSK-3β as a key attenuator of Runx2 activity in bone formation and as a potential molecular target for clinical treatment of bone catabolic disorders like cleidocranial dysplasia.


Developmental Cell | 2008

Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity.

Shinsuke Ohba; Hiroshi Kawaguchi; Fumitaka Kugimiya; Toru Ogasawara; Naohiro Kawamura; Taku Saito; Toshiyuki Ikeda; Katsunori Fujii; Tsuyoshi Miyajima; Akira Kuramochi; Toshiyuki Miyashita; Hiromi Oda; Kozo Nakamura; Tsuyoshi Takato; Ung-il Chung

Hedgehog (Hh)-Patched1 (Ptch1) signaling plays essential roles in various developmental processes, but little is known about its role in postnatal homeostasis. Here, we demonstrate regulation of postnatal bone homeostasis by Hh-Ptch1 signaling. Ptch1-deficient (Ptch1+/-) mice and patients with nevoid basal cell carcinoma syndrome showed high bone mass in adults. In culture, Ptch1+/- cells showed accelerated osteoblast differentiation, enhanced responsiveness to the runt-related transcription factor 2 (Runx2), and reduced generation of the repressor form of Gli3 (Gli3rep). Gli3rep inhibited DNA binding by Runx2 in vitro, suggesting a mechanism that could contribute to the bone phenotypes seen in the Ptch1 heterozygotes. Moreover, systemic administration of the Hh signaling inhibitor cyclopamine decreased bone mass in adult mice. These data provide evidence that Hh-Ptch1 signaling plays a crucial role in postnatal bone homeostasis and point to Hh-Ptch1 signaling as a potential molecular target for the treatment of osteoporosis.


Human Molecular Genetics | 2012

C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes

Makoto Hirata; Fumitaka Kugimiya; Atsushi Fukai; Taku Saito; Fumiko Yano; Toshiyuki Ikeda; Akihiko Mabuchi; Bishwa Raj Sapkota; Toru Akune; Nao Nishida; Noriko Yoshimura; Takumi Nakagawa; Katsushi Tokunaga; Kozo Nakamura; Ung-il Chung; Hiroshi Kawaguchi

To elucidate the molecular mechanism underlying the endochondral ossification process during the skeletal growth and osteoarthritis (OA) development, we examined the signal network around CCAAT/enhancer-binding protein-β (C/EBPβ, encoded by CEBPB), a potent regulator of this process. Computational predictions and a C/EBP motif-reporter assay identified RUNX2 as the most potent transcriptional partner of C/EBPβ in chondrocytes. C/EBPβ and RUNX2 were induced and co-localized in highly differentiated chondrocytes during the skeletal growth and OA development of mice and humans. The compound knockout of Cebpb and Runx2 in mice caused growth retardation and resistance to OA with decreases in cartilage degradation and matrix metalloproteinase-13 (Mmp-13) expression. C/EBPβ and RUNX2 cooperatively enhanced promoter activity of MMP13 through specific binding to a C/EBP-binding motif and an osteoblast-specific cis-acting element 2 motif as a protein complex. Human genetic studies failed to show the association of human CEBPB gene polymorphisms with knee OA, nor was there a genetic variation around the identified responsive region in the human MMP13 promoter. However, hypoxia-inducible factor-2α (HIF-2α), a functional and genetic regulator of knee OA through promoting endochondral ossification, was identified as a potent and functional inducer of C/EBPβ expression in chondrocytes by the CEBPB promoter assay. Hence, C/EBPβ and RUNX2, with MMP-13 as the target and HIF-2α as the inducer, control cartilage degradation. This molecular network in chondrocytes may represent a therapeutic target for OA.


PLOS ONE | 2009

C/EBPβ Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2

Makoto Hirata; Fumitaka Kugimiya; Atsushi Fukai; Shinsuke Ohba; Naohiro Kawamura; Toru Ogasawara; Yosuke Kawasaki; Taku Saito; Fumiko Yano; Toshiyuki Ikeda; Kozo Nakamura; Ung-il Chung; Hiroshi Kawaguchi

Background Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) in chondrocytes during endochondral ossification. Methodology/Principal Findings Mouse embryos with homozygous deficiency in C/EBPβ (C/EBPβ−/−) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPβ−/− chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPβ in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPβ. In fact, a DNA cell cycle histogram revealed that the C/EBPβ overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57Kip2 as the transcriptional target of C/EBPβ. p57Kip2 was co-localized with C/EBPβ in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPβ deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPβ in the p57Kip2 promoter between −150 and −130 bp region containing a putative C/EBP motif. The knockdown of p57Kip2 by the siRNA inhibited the C/EBPβ-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPβ+/− littermates, the C/EBPβ insufficiency caused resistance to joint cartilage destruction. Conclusions/Significance C/EBPβ transactivates p57Kip2 to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPβ-p57Kip2 signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis.


Journal of Clinical Investigation | 2008

Phosphorylation of GSK-3β by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes

Yosuke Kawasaki; Fumitaka Kugimiya; Hirotaka Chikuda; Satoru Kamekura; Toshiyuki Ikeda; Naohiro Kawamura; Taku Saito; Yusuke Shinoda; Akiro Higashikawa; Fumiko Yano; Toru Ogasawara; Naoshi Ogata; Kazuto Hoshi; Franz Hofmann; James R. Woodgett; Kozo Nakamura; Ung-il Chung; Hiroshi Kawaguchi

cGMP-dependent protein kinase II (cGKII; encoded by PRKG2) is a serine/threonine kinase that is critical for skeletal growth in mammals; in mice, cGKII deficiency results in dwarfism. Using radiographic analysis, we determined that this growth defect was a consequence of an elongated growth plate and impaired chondrocyte hypertrophy. To investigate the mechanism of cGKII-mediated chondrocyte hypertrophy, we performed a kinase substrate array and identified glycogen synthase kinase-3beta (GSK-3beta; encoded by Gsk3b) as a principal phosphorylation target of cGKII. In cultured mouse chondrocytes, phosphorylation-mediated inhibition of GSK-3beta was associated with enhanced hypertrophic differentiation. Furthermore, cGKII induction of chondrocyte hypertrophy was suppressed by cotransfection with a phosphorylation-deficient mutant of GSK-3beta. Analyses of mice with compound deficiencies in both protein kinases (Prkg2(-/-)Gsk3b(+/-)) demonstrated that the growth retardation and elongated growth plate associated with cGKII deficiency were partially rescued by haploinsufficiency of Gsk3b. We found that beta-catenin levels decreased in Prkg2(-/-) mice, while overexpression of cGKII increased the accumulation and transactivation function of beta-catenin in mouse chondroprogenitor ATDC5 cells. This effect was blocked by coexpression of phosphorylation-deficient GSK-3beta. These data indicate that hypertrophic differentiation of growth plate chondrocytes during skeletal growth is promoted by phosphorylation and inactivation of GSK-3beta by cGKII.


Journal of Biological Chemistry | 2008

Kruppel-like factor 5 causes cartilage degradation through transactivation of matrix metalloproteinase 9.

Yusuke Shinoda; Naoshi Ogata; Akiro Higashikawa; Ichiro Manabe; Takayuki Shindo; Takashi Yamada; Fumitaka Kugimiya; Toshiyuki Ikeda; Naohiro Kawamura; Yosuke Kawasaki; Kensuke Tsushima; Norifumi Takeda; Ryozo Nagai; Kazuto Hoshi; Kozo Nakamura; Ung-il Chung; Hiroshi Kawaguchi

Although degradation of cartilage matrix has been suggested to be a rate-limiting step for endochondral ossification during skeletal development, little is known about the transcriptional regulation. This study investigated the involvement of KLF5 (Krüppel-like factor 5), an Sp/KLF family member, in the skeletal development. KLF5 was expressed in chondrocytes and osteoblasts but not in osteoclasts. The heterozygous deficient (KLF5+/-) mice exhibited skeletal growth retardation in the perinatal period. Although chondrocyte proliferation and differentiation were normal, cartilage matrix degradation was impaired in KLF5+/- mice, causing delay in replacement of cartilage with bone at the primary ossification center in the embryonic limbs and elongation of hypertrophic chondrocyte layer in the neonatal growth plates. Microarray analyses identified MMP9 (matrix metalloproteinase 9) as a transcriptional target, since it was strongly up-regulated by adenoviral transfection of KLF5 in chondrogenic cell line OUMS27. The KLF5 overexpression caused gelatin degradation by stimulating promoter activity of MMP9 without affecting chondrocyte differentiation or vascular endothelial growth factor expression in the culture of chondrogenic cells; however, in osteoclast precursors, it affected neither MMP9 expression nor osteoclastic differentiation. KLF5 dysfunction by genetic heterodeficiency or RNA interference was confirmed to cause reduction of MMP9 expression in cultured chondrogenic cells. MMP9 expression was decreased in the limbs of KLF5+/- embryos, which was correlated with suppression of matrix degradation, calcification, and vascularization. We conclude that KLF5 causes cartilage matrix degradation through transcriptional induction of MMP9, providing the first evidence that transcriptional regulation of a proteinase contributes to endochondral ossification and skeletal development.


The FASEB Journal | 2007

Identification of a potent combination of osteogenic genes for bone regeneration using embryonic stem (ES) cell-based sensor

Shinsuke Ohba; Toshiyuki Ikeda; Fumitaka Kugimiya; Fumiko Yano; Alexander C. Lichtler; Kozo Nakamura; Tsuyoshi Takato; Hiroshi Kawaguchi; Ung-il Chung

To identify potent bioactive factors for in vivo tissue regeneration by comprehensive screening remains a challenge for regenerative medicine. Here we report the development of an ES cell‐based monitoring system for osteogenic differentiation, the identification of a potent combination of osteogenic genes using such a system, and an evaluation of its therapeutic potentials. ES cells were isolated from mice carrying a transgene expressing GFP driven by the 2.3 kb fragment of rat type I collagen α(1) promoter. Using these cells engineered to fluoresce on osteogenic differenti‐ation, we screened cDNA libraries and combinations of major osteogenesis‐related genes. Among them, the combination of constitutively active activin receptorlike kinase 6 (caALK6) and runt‐related transcription factor 2 (Runx2) was the minimal unit that induced fluorescence. The combination efficiently induced os‐teogenic differentiation in various cell types, including terminally differentiated nonosteogenic cells. The cooperative action of the combination occurred through protein stabilization of core binding factor beta (Cbfb), induction of Runx2‐Cbfb complex formation, and its DNA binding. Furthermore, transplantation of a mono‐layer sheet of fibroblasts transduced with the combination achieved bone regeneration within 4 wk in mouse calvarial bone defects. Thus, we successfully identified the potent combination of genes for bone regeneration, which helped broaden cell sources.—Ohba, S., Ikeda, T., Kugimiya, F., Yano, F., Lichtler, A. C., Nakamura, K., Takato, T., Kawaguchi, H., Chung, U. I. Identification of a potent combination of osteogenic genes for bone regeneration using embryonic stem (ES) cell‐based sensor. FASEB J. 21, 1777–1787 (2007)


Arthritis & Rheumatism | 2010

Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions.

Atsushi Fukai; Naohiro Kawamura; Taku Saito; Yasushi Oshima; Toshiyuki Ikeda; Fumitaka Kugimiya; Akiro Higashikawa; Fumiko Yano; Naoshi Ogata; Kozo Nakamura; Ung-il Chung; Hiroshi Kawaguchi

OBJECTIVE To examine the role of the phosphoinositide-dependent serine/threonine protein kinase Akt1 in chondrocytes during endochondral ossification. METHODS Skeletal phenotypes of homozygous Akt1-deficient (Akt1(-/-)) mice and their wild-type littermates were compared in radiologic and histologic analyses. An experimental osteoarthritis (OA) model was created by surgically inducing instability in the knee joints of mice. For functional analyses, we used primary costal and articular chondrocytes from neonatal mice and mouse chondrogenic ATDC5 cells with retroviral overexpression of constitutively active Akt1 or small interfering RNA (siRNA) for Akt1. RESULTS Among the Akt isoforms (Akt1, Akt2, and Akt3), Akt1 was the most highly expressed in chondrocytes, and the total level of Akt protein was decreased in Akt1(-/-) chondrocytes, indicating a dominant role of Akt1. Akt1(-/-) mice exhibited dwarfism with normal proliferative and hypertrophic zones but suppressed cartilage calcification in the growth plate compared with their wild-type littermates. In mice with surgically induced OA, calcified osteophyte formation, but not cartilage degradation, was prevented in the Akt1(-/-) joints. Calcification was significantly suppressed in cultures of Akt1(-/-) chondrocytes or ATDC5 cells overexpressing siRNA for Akt1 and was enhanced in ATDC5 cells overexpressing constitutively active Akt1. Neither proliferation nor hypertrophic differentiation was affected by the gain or loss of function of Akt1. The expression of ANK and nucleotide pyrophosphatase/phosphodiesterase 1, which accumulate pyrophosphate, a crucial calcification inhibitor, was enhanced by Akt1 deficiency or siRNA for Akt1 and was suppressed by constitutively active Akt1. CONCLUSION Our findings indicate that Akt1 in chondrocytes controls cartilage calcification by inhibiting pyrophosphate during endochondral ossification in skeletal growth and during osteophyte formation in OA.


Journal of Bone and Mineral Metabolism | 2006

Physiological role of bone morphogenetic proteins in osteogenesis

Fumitaka Kugimiya; Shinsuke Ohba; Kozo Nakamura; Hiroshi Kawaguchi; Ung-il Chung

Bone morphogenetic proteins (BMPs) are members of secreted signaling proteins that belong to the transforming growth factor-β superfamily. BMPs were originally identified as molecules that induced ectopic bone formation when implanted into rodent muscles [1,2]. In this process, mesenchymal precursor cells condense and differentiate into two distinct tissues, namely the cartilage template and the surrounding perichondrium. Subsequently, chondrocytes in the cartilage template undergo a program of proliferation, cell cycle arrest, hypertrophy, calcification, and ultimately cell death. Ossification of the calcified matrix around the hypertrophic layer occurs upon vascularization and the recruitment of osteoblasts to the site [3]. In accordance with such in vivo effects, BMPs have been shown to regulate osetoblast differentiation in vitro [4]. BMPs bind to a characteristic pair of type I and II transmembrane serine/threonine kinase receptors (Fig. 1). They first bind to the type II receptor, which phosphorylates the GS domain of the type I receptor. The activated type I receptor subsequently recruits and phosphorylates the transcription factors Smad1, Smad5, and Smad8 (R-Smads) through the GS domain. R-Smads then physically associate with Smad4 (Co-Smad), translocate into the nucleus, and activate the target genes in concert with other coactivators. Smad6 blocks BMP signaling by inhibiting the phosphorylation of the BMP-dependent R-Smads by the BMP type I receptors [5,6].

Collaboration


Dive into the Fumitaka Kugimiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge