Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumito Maruyama is active.

Publication


Featured researches published by Fumito Maruyama.


Nature Communications | 2014

Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation

Koichi Hori; Fumito Maruyama; Takatomo Fujisawa; Tomoaki Togashi; Nozomi Yamamoto; Mitsunori Seo; Syusei Sato; Takuji Yamada; Hiroshi Mori; Naoyuki Tajima; Takashi Moriyama; Masahiko Ikeuchi; Mai Watanabe; Hajime Wada; Koichi Kobayashi; Masakazu Saito; Tatsuru Masuda; Yuko Sasaki-Sekimoto; Kiyoshi Mashiguchi; Koichiro Awai; Mie Shimojima; Shinji Masuda; Masako Iwai; Takashi Nobusawa; Takafumi Narise; Satoshi Kondo; Hikaru Saito; Ryoichi Sato; Masato Murakawa; Yuta Ihara

The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments.


Frontiers in Microbiology | 2013

Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov.

Tomoo Sawabe; Yoshitoshi Ogura; Yuta Matsumura; Gao Feng; A.K.M. Rohul Amin; Sayaka Mino; Satoshi Nakagawa; Toko Sawabe; Ramesh Kumar; Yohei Fukui; Masataka Satomi; Ryoji Matsushima; Fabiano L. Thompson; Bruno Gomez Gil; Richard Christen; Fumito Maruyama; Ken Kurokawa; Tetsuya Hayashi

To date 142 species have been described in the Vibrionaceae family of bacteria, classified into seven genera; Aliivibrio, Echinimonas, Enterovibrio, Grimontia, Photobacterium, Salinivibrio and Vibrio. As vibrios are widespread in marine environments and show versatile metabolisms and ecologies, these bacteria are recognized as one of the most diverse and important marine heterotrophic bacterial groups for elucidating the correlation between genome evolution and ecological adaptation. However, on the basis of 16S rRNA gene phylogeny, we could not find any robust monophyletic lineages in any of the known genera. We needed further attempts to reconstruct their evolutionary history based on multilocus sequence analysis (MLSA) and/or genome wide taxonomy of all the recognized species groups. In our previous report in 2007, we conducted the first broad multilocus sequence analysis (MLSA) to infer the evolutionary history of vibrios using nine housekeeping genes (the 16S rRNA gene, gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA), and we proposed 14 distinct clades in 58 species of Vibrionaceae. Due to the difficulty of designing universal primers that can amplify the genes for MLSA in every Vibrionaceae species, some clades had yet to be defined. In this study, we present a better picture of an updated molecular phylogeny for 86 described vibrio species and 10 genome sequenced Vibrionaceae strains, using 8 housekeeping gene sequences. This new study places special emphasis on (1) eight newly identified clades (Damselae, Mediterranei, Pectenicida, Phosphoreum, Profundum, Porteresiae, Rosenbergii, and Rumoiensis); (2) clades amended since the 2007 proposal with recently described new species; (3) orphan clades of genomospecies F6 and F10; (4) phylogenetic positions defined in 3 genome-sequenced strains (N418, EX25, and EJY3); and (5) description of V. tritonius sp. nov., which is a member of the “Porteresiae” clade.


Applied and Environmental Microbiology | 2003

Detection of Bacteria Carrying the stx2 Gene by In Situ Loop-Mediated Isothermal Amplification

Fumito Maruyama; Takehiko Kenzaka; Nobuyasu Yamaguchi; Katsuji Tani; Masao Nasu

ABSTRACT A new in situ DNA amplification technique for microscopic detection of bacteria carrying a specific gene is described. Loop-mediated isothermal amplification (LAMP) was used to detect stxA2 in Escherichia coli O157:H7 cells. The mild permeabilization conditions and low isothermal temperature used in the in situ LAMP method caused less cell damage than in situ PCR. It allowed use of fluorescent antibody labeling in the bacterial mixture after the DNA amplification for identification of E. coli O157:H7 cells with an stxA2 gene. Higher-contrast images were obtained with this method than with in situ PCR.


Journal of Bacteriology | 2012

Complete Genome Sequence of Acidovorax sp. Strain KKS102, a Polychlorinated-Biphenyl Degrader

Yoshiyuki Ohtsubo; Fumito Maruyama; Hisayuki Mitsui; Yuji Nagata; Masataka Tsuda

We report the complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl-degrading strain isolated from a soil sample in Tokyo. The genome contains a single circular 5,196,935-bp chromosome and no plasmids.


PLOS ONE | 2011

CRISPR Inhibition of Prophage Acquisition in Streptococcus pyogenes

Takashi Nozawa; Nayuta Furukawa; Chihiro Aikawa; Takayasu Watanabe; Bijaya Haobam; Ken Kurokawa; Fumito Maruyama; Ichiro Nakagawa

Streptococcus pyogenes, one of the major human pathogens, is a unique species since it has acquired diverse strain-specific virulence properties mainly through the acquisition of streptococcal prophages. In addition, S. pyogenes possesses clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems that can restrict horizontal gene transfer (HGT) including phage insertion. Therefore, it was of interest to examine the relationship between CRISPR and acquisition of prophages in S. pyogenes. Although two distinct CRISPR loci were found in S. pyogenes, some strains lacked CRISPR and these strains possess significantly more prophages than CRISPR harboring strains. We also found that the number of spacers of S. pyogenes CRISPR was less than for other streptococci. The demonstrated spacer contents, however, suggested that the CRISPR appear to limit phage insertions. In addition, we found a significant inverse correlation between the number of spacers and prophages in S. pyogenes. It was therefore suggested that S. pyogenes CRISPR have permitted phage insertion by lacking its own spacers. Interestingly, in two closely related S. pyogenes strains (SSI-1 and MGAS315), CRISPR activity appeared to be impaired following the insertion of phage genomes into the repeat sequences. Detailed analysis of this prophage insertion site suggested that MGAS315 is the ancestral strain of SSI-1. As a result of analysis of 35 additional streptococcal genomes, it was suggested that the influences of the CRISPR on the phage insertion vary among species even within the same genus. Our results suggested that limitations in CRISPR content could explain the characteristic acquisition of prophages and might contribute to strain-specific pathogenesis in S. pyogenes.


BMC Genomics | 2009

Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content

Fumito Maruyama; Mitsuhiko Kobata; Ken Kurokawa; Keishin Nishida; Atsuo Sakurai; Kazuhiko Nakano; Ryota Nomura; Shigetada Kawabata; Takashi Ooshima; Kenta Nakai; Masahira Hattori; Shigeyuki Hamada; Ichiro Nakagawa

BackgroundStreptococcus mutans is the major pathogen of dental caries, and it occasionally causes infective endocarditis. While the pathogenicity of this species is distinct from other human pathogenic streptococci, the species-specific evolution of the genus Streptococcus and its genomic diversity are poorly understood.ResultsWe have sequenced the complete genome of S. mutans serotype c strain NN2025, and compared it with the genome of UA159. The NN2025 genome is composed of 2,013,587 bp, and the two strains show highly conserved core-genome. However, comparison of the two S. mutans strains showed a large genomic inversion across the replication axis producing an X-shaped symmetrical DNA dot plot. This phenomenon was also observed between other streptococcal species, indicating that streptococcal genetic rearrangements across the replication axis play an important role in Streptococcus genetic shuffling. We further confirmed the genomic diversity among 95 clinical isolates using long-PCR analysis. Genomic diversity in S. mutans appears to occur frequently between insertion sequence (IS) elements and transposons, and these diversity regions consist of restriction/modification systems, antimicrobial peptide synthesis systems, and transporters. S. mutans may preferentially reject the phage infection by clustered regularly interspaced short palindromic repeats (CRISPRs). In particular, the CRISPR-2 region, which is highly divergent between strains, in NN2025 has long repeated spacer sequences corresponding to the streptococcal phage genome.ConclusionThese observations suggest that S. mutans strains evolve through chromosomal shuffling and that phage infection is not needed for gene acquisition. In contrast, S. pyogenes tolerates phage infection for acquisition of virulence determinants for niche adaptation.


Applied and Environmental Microbiology | 2013

Genetic Analysis of Capsular Polysaccharide Synthesis Gene Clusters from All Serotypes of Streptococcus suis: Potential Mechanisms for Generation of Capsular Variation

Masatoshi Okura; Daisuke Takamatsu; Fumito Maruyama; Takashi Nozawa; Ichiro Nakagawa; Makoto Osaki; Tsutomu Sekizaki; Marcelo Gottschalk; Yumi Kumagai; Shigeyuki Hamada

ABSTRACT Streptococcus suis strains are classified into 35 serotypes on the basis of the antigenicity of their capsular polysaccharides (CPs). CP synthesis genes are known to be clustered on the chromosome (cps gene cluster). The entire cps gene clusters of S. suis have so far been sequenced in 15 serotypes and found to be located between orfZ and aroA. In this study, to provide comprehensive information about S. suis CPs, we sequenced the entire cps gene clusters of the remaining serotypes and analyzed the complete set of S. suis cps gene clusters. Among the 35 cps gene clusters, 22 were located between orfZ and aroA, whereas the other 13 were flanked by other gene(s) on the chromosomes, and the chromosomal locus was classified into five patterns. By clustering analysis, the predicted products of cps genes found in the 35 serotypes were assigned into 291 homology groups, and all serotypes possessed a serotype-specific gene, except for serotypes 1, 2, 1/2, and 14. Because of the presence of genes encoding flippase (wzx) and polymerase (wzy), CPs of all serotypes were thought to be synthesized by the Wzx/Wzy pathway. Our data also implied the possibility of the transfer of the entire or partial cps gene clusters among S. suis strains, as well as the influence of spontaneous mutations in a single gene or a few genes on the antigenicity of some serotypes. Accumulation of these gene transfers and small-scale mutations may have generated the antigenic diversity of S. suis CPs.


Cellular Microbiology | 2012

The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A Streptococcus infection

Takashi Nozawa; Chihiro Aikawa; Akira Goda; Fumito Maruyama; Shigeyuki Hamada; Ichiro Nakagawa

Autophagy mediates the degradation of cytoplasmic contents in the lysosome and plays a significant role in immunity. Here we identified the small GTPases Rab9A and Rab23 as novel autophagy regulators during Group A streptococcus (GAS) infection. Rab9A was recruited to GAS‐containing autophagosome‐like vacuoles (GcAVs) after autophagosomal maturation and its activity was required for GcAV enlargement and eventual lysosomal fusion. GcAV enlargement appeared to be related to homotypic fusion of GcAVs with Rab9A. Rab23 was recruited to GAS‐capturing forming autophagosomes. Knockdown of Rab23 expression decreased both LC3‐ and Atg5‐positive GAS formation and caused the accumulation of LC3‐positive structures that did not associate with intracellular GAS. It was suggested, therefore, that Rab23 is required for GcAV formation and is involved in GAS targeting of autophagic vacuoles. Furthermore, knockdown of Rab9A or Rab23 expression impaired the degradation of intracellular GAS. Therefore, our data reveal that the Rab9A and Rab23 GTPases play crucial roles in autophagy of GAS. However, neither Rab9A nor Rab23 were localized to starvation‐induced autophagosomes. Not only Rab9A but also Rab23 was dispensable for starvation‐induced autophagosome formation. These findings demonstrate that specific Rab proteins function at distinct steps during autophagy in response to GAS infection.


DNA Research | 2014

Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes

Hiroshi Mori; Fumito Maruyama; Hiromi Kato; Atsushi Toyoda; Ayumi Dozono; Yoshiyuki Ohtsubo; Yuji Nagata; Asao Fujiyama; Masataka Tsuda; Ken Kurokawa

The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.


Journal of Biological Chemistry | 2010

Specific Behavior of Intracellular Streptococcus pyogenes That Has Undergone Autophagic Degradation Is Associated with Bacterial Streptolysin O and Host Small G Proteins Rab5 and Rab7

Atsuo Sakurai; Fumito Maruyama; Junko Funao; Takashi Nozawa; Chihiro Aikawa; Nobuo Okahashi; Seikou Shintani; Shigeyuki Hamada; Takashi Ooshima; Ichiro Nakagawa

Streptococcus pyogenes (group A streptococcus (GAS)) is a pathogen that invades non-phagocytic host cells, and causes a variety of acute infections such as pharyngitis. Our group previously reported that intracellular GAS is effectively degraded by the host-cell autophagic machinery, and that a cholesterol-dependent cytolysin, streptolysin O (SLO), is associated with bacterial escape from endosomes in epithelial cells. However, the details of both the intracellular behavior of GAS and the process leading to its autophagic degradation remain unknown. In this study, we found that two host small G proteins, Rab5 and Rab7, were associated with the pathway of autophagosome formation and the fate of intracellular GAS. Rab5 was involved in bacterial invasion and endosome fusion. Rab7 was clearly multifunctional, with roles in bacterial invasion, endosome maturation, and autophagosome formation. In addition, this study showed that the bacterial cytolysin SLO supported the escape of GAS into the cytoplasm from endosomes, and surprisingly, a SLO-deficient mutant of GAS was viable longer than the wild-type strain although it failed to escape the endosomes. This intracellular behavior of GAS is unique and distinct from that of other types of bacterial invaders. Our results provide a new picture of GAS infection and host-cell responses in epithelial cells.

Collaboration


Dive into the Fumito Maruyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Kurokawa

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takayasu Watanabe

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge