Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumiyo Matsuda is active.

Publication


Featured researches published by Fumiyo Matsuda.


Biochemical and Biophysical Research Communications | 2009

Edaravone attenuates cerebral ischemic injury by suppressing aquaporin-4

Kiyoshi Kikuchi; Salunya Tancharoen; Fumiyo Matsuda; Kamal Krishna Biswas; Takashi Ito; Yoko Morimoto; Yoko Oyama; Kazunori Takenouchi; Naoki Miura; Noboru Arimura; Yuko Nawa; Xiaojie Meng; Binita Shrestha; Shinichiro Arimura; Masahiro Iwata; Kentaro Mera; Hisayo Sameshima; Yoshiko Ohno; Ryuichi Maenosono; Yutaka Tajima; Terukazu Kuramoto; Kenji Nakayama; Minoru Shigemori; Yoshihiro Yoshida; Teruto Hashiguchi; Ikuro Maruyama; Ko-ichi Kawahara

Aquaporin-4 (AQP4) plays a role in the generation of post-ischemic edema. Pharmacological modulation of AQP4 function may thus provide a novel therapeutic strategy for the treatment of stroke, tumor-associated edema, epilepsy, traumatic brain injury, and other disorders of the central nervous system (CNS) associated with altered brain water balance. Edaravone, a free radical scavenger, is used for the treatment of acute ischemic stroke (AIS) in Japan. In this study, edaravone significantly reduced the infarct area and improved the neurological deficit scores at 24h after reperfusion in a rat transient focal ischemia model. Furthermore, edaravone markedly reduced AQP4 immunoreactivity and protein levels in the cerebral infarct area. In light of observations that edaravone specifically inhibited AQP4 in a rat transient focal ischemia model, we propose that edaravone might reduce cerebral edema through the inhibition of AQP4 expression following cerebral infarction.


Journal of Pharmacology and Experimental Therapeutics | 2009

The Free Radical Scavenger Edaravone Rescues Rats from Cerebral Infarction by Attenuating the Release of High-Mobility Group Box-1 in Neuronal Cells

Kiyoshi Kikuchi; Ko-ichi Kawahara; Salunya Tancharoen; Fumiyo Matsuda; Yoko Morimoto; Takashi Ito; Kamal Krishna Biswas; Kazunori Takenouchi; Naoki Miura; Yoko Oyama; Yuko Nawa; Noboru Arimura; Masahiro Iwata; Yutaka Tajima; Terukazu Kuramoto; Kenji Nakayama; Minoru Shigemori; Yoshihiro Yoshida; Teruto Hashiguchi; Ikuro Maruyama

Edaravone, a potent free radical scavenger, is clinically used for the treatment of cerebral infarction in Japan. Here, we examined the effects of edaravone on the dynamics of high-mobility group box-1 (HMGB1), which is a key mediator of ischemic-induced brain damage, during a 48-h postischemia/reperfusion period in rats and in oxygen-glucose-deprived (OGD) PC12 cells. HMGB1 immunoreactivity was observed in both the cytoplasm and the periphery of cells in the cerebral infarction area 2 h after reperfusion. Intravenous administration of 3 and 6 mg/kg edaravone significantly inhibited nuclear translocation and HMGB1 release in the penumbra area and caused a 26.5 ± 10.4 and 43.8 ± 0.5% reduction, respectively, of the total infarct area at 24 h after reperfusion. Moreover, edaravone also decreased plasma HMGB1 levels. In vitro, edaravone dose-dependently (1–10 μM) suppressed OGD- and H2O2-induced HMGB1 release in PC12 cells. Furthermore, edaravone (3–30 μM) blocked HMGB1-triggered apoptosis in PC12 cells. Our findings suggest a novel neuroprotective mechanism for edaravone that abrogates the release of HMGB1.


Autophagy | 2011

Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: Functional analysis of p62 and autophagy in hypoxic neuronal cells

Fumito Tanabe; Kazunori Yone; Naoya Kawabata; Harutoshi Sakakima; Fumiyo Matsuda; Yasuhiro Ishidou; Shingo Maeda; Masahiko Abematsu; Setsuro Komiya; Takao Setoguchi

Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.


Biochemical and Biophysical Research Communications | 2009

Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells.

Kiyoshi Kikuchi; Ko-ichi Kawahara; Kamal Krishna Biswas; Takashi Ito; Salunya Tancharoen; Yoko Morimoto; Fumiyo Matsuda; Yoko Oyama; Kazunori Takenouchi; Naoki Miura; Noboru Arimura; Yuko Nawa; Xiaojie Meng; Binita Shrestha; Shinichiro Arimura; Masahiro Iwata; Kentaro Mera; Hisayo Sameshima; Yoshiko Ohno; Ryuichi Maenosono; Yoshihiro Yoshida; Yutaka Tajima; Terukazu Kuramoto; Kenji Nakayama; Minoru Shigemori; Teruto Hashiguchi; Ikuro Maruyama

High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.


Case reports in orthopedics | 2013

A Newly Developed Robot Suit Hybrid Assistive Limb Facilitated Walking Rehabilitation after Spinal Surgery for Thoracic Ossification of the Posterior Longitudinal Ligament: A Case Report

Harutoshi Sakakima; Kosei Ijiri; Fumiyo Matsuda; Hiroyuki Tominaga; Takanori Biwa; Kazunori Yone; Yoshiyuki Sankai

Most patients with thoracic ossification of the posterior longitudinal ligament (OPLL) exhibit delayed recovery of gait dysfunction after spinal injury. The hybrid assistive limb (HAL) is a new robot suit controlling knee and hip joint motion by detecting very weak bioelectric signals on the surface of the skin. This study is to report the feasibility and benefits of patient-assistive HAL walking rehabilitation for facilitating locomotor function after spinal surgery. The patient was a 60-year-old woman with thoracic OPLL, and her motor and sensory paralyses did not improve after spinal surgery, indicating severe impairment in the paretic legs. The subject underwent 6 HAL sessions per week for 8 weeks, consisting of a standing and sitting exercise and walking on the ground with HAL. Clinical outcomes were evaluated before and after HAL training and 1 year after surgery. The subject improved considerably as a result of HAL training. Subsequently, her walking ability recovered rapidly, and she was able to walk unaided six months after surgery. This case study suggests that HAL training is a feasible and effective option to facilitating locomotor function and the early HAL training with physiotherapy may enhance motor recovery of patients with residual paralysis after surgery.


Medical Hypotheses | 2010

Edaravone: a new therapeutic approach for the treatment of acute stroke.

Kiyoshi Kikuchi; Ko-ichi Kawahara; Naohisa Miyagi; Terukazu Kuramoto; Yoko Morimoto; Salunya Tancharoen; Naoki Miura; Kazunori Takenouchi; Yoko Oyama; Binita Shrestha; Fumiyo Matsuda; Yoshihiro Yoshida; Shinichiro Arimura; Kentaro Mera; Ko-ichi Tada; Narimasa Yoshinaga; Ryuichi Maenosono; Yoshiko Ohno; Teruto Hashiguchi; Ikuro Maruyama; Minoru Shigemori

Acute stroke, including acute ischemic stroke (AIS) and acute hemorrhagic stroke, (AHS) is a common medical problem with particular relevance to the demographic changes in industrialized societies. In recent years, treatments for AIS have emerged, including thrombolysis with tissue plasminogen activator (t-PA). Although t-PA is the most effective currently available therapy, it is limited by a narrow therapeutic time window and side effects, and only 3% of all AIS patients receive thrombolysis. Edaravone was originally developed as a potent free radical scavenger and, since 2001, has been widely used to treat AIS in Japan. It was shown that edaravone extended the narrow therapeutic time window of t-PA in rats. The therapeutic time window is very important for the treatment of AIS, and early edaravone treatment is more effective. Thus, more AIS patients might be rescued by administering edaravone with t-PA. Meanwhile, edaravone attenuates AHS-induced brain edema, neurologic deficits and oxidative injury in rats. Although edaravone treatment is currently only indicated for AIS, it does offer neuroprotective effects against AHS in rats. Therefore, we hypothesize that early administration of edaravone can rescue AHS patients as well as AIS patients. Taken together, our findings suggest that edaravone should be immediately administered on suspicion of acute stroke, including AIS and AHS.


Pathology Research and Practice | 2011

Senescence of chondrocytes in aging articular cartilage: GADD45β mediates p21 expression in association with C/EBPβ in senescence-accelerated mice

Hirofumi Shimada; Harutoshi Sakakima; Kaneyuki Tsuchimochi; Fumiyo Matsuda; Setsuro Komiya; Mary B. Goldring; Kosei Ijiri

Growth arrest and DNA damage-inducible protein 45β (GADD45β) is expressed in normal and early osteoarthritic articular cartilage. We recently reported that GADD45β enhances CCAAT/enhancer binding protein β (C/EBPβ) activation in vitro. This study was undertaken in order to determine whether GADD45β is expressed with C/EBPβ in aging articular cartilage. We also investigated whether the synergistic expression of GADD45β and C/EBPβ may be involved in the mechanism of chondrocyte senescence. Senescence-accelerated mice (SAMP1) were used as a model of aging. GADD45β, C/EBPβ, and p21 were analyzed by immunohistochemistry. A luciferase reporter assay using ATDC5 cells was performed in order to examine p21 as a target gene of the GADD45β/C/EBPβ cascade. GADD45β exhibited increased expression in the aging articular cartilage of SAMP1 mice compared to that in control mice. The co-localization of GADD45β and C/EBPβ was confirmed by double immunostaining. The synergistic mechanisms of GADD45β and C/EBPβ on the gene regulation of p21, a molecule related to cellular senescence, were verified by a p21-luciferase reporter assay. Co-expression of C/EBPβ and p21 was confirmed. These observations suggest that the synergism between GADD45β and C/EBPβ may play an important role in cellular senescence in the aging articular cartilage.


Acta Histochemica | 2014

Midkine-deficient mice delayed degeneration and regeneration after skeletal muscle injury

Masako Ikutomo; Harutoshi Sakakima; Fumiyo Matsuda; Yoshihiro Yoshida

Midkine (MK), a heparin-binding growth factor, was previously found to be expressed in the rat myotube-forming stage. We investigated MK gene-deficient (Mdk(-/-)) mice in terms of skeletal muscle degeneration and regeneration after injury by bupivacaine injection into the tibialis anterior muscle. Injured muscles showed intense inflammatory cell infiltration. Myotubes, myofibers with centrally located nuclei in their cytoplasm, were significantly smaller in Mdk(-/-) mice than in wild type (Mdk(+/+)) mice 7 days after injury (p=0.02). The distribution of myotube sizes showed quantitative differences between the two groups at 5 and 7 days, but not at 14 days. Many small myotubes were found in the regenerative area of Mdk(-/-) mice compared with that of Mdk(+/+)mice 5 and 7 days after injury. The expression of Iba1, a macrophage marker, was significantly lower in Mdk(-/-) mice 3 days after injury (p=0.01). The number of desmin-positive cells like myoblasts in Mdk(-/-) mice was significantly fewer than that in Mdk(+/+) mice 3 days after injury. Our results suggested that deletion of MK results in a delay in regeneration, preceded by decelerated migration of macrophages to the damaged area, and that MK has a role in cell differentiation and maturation after skeletal muscle injury.


British Journal of Pharmacology | 2014

Midkine in repair of the injured nervous system

Yoshihiro Yoshida; Harutoshi Sakakima; Fumiyo Matsuda; Masako Ikutomo

Midkine (MK) is a growth factor with neurotrophic and neurite outgrowth activities. It was expressed in the peri‐ischaemic area in the acute phase of cerebral infarction in rat brains. Astrocytes were the origin of MK in this occasion. MK has been assessed in terms of its effects on neural injury. The administration of MK into the lateral ventricle immediately prior to ischaemia prevented cell death in the hippocampal CA1 neurons degenerated by transient forebrain ischaemia in gerbils. MK administration was also beneficial in rats with neural injury, especially after kainic acid‐induced seizures. Gene therapy with mouse MK cDNA using an adenovirus was effective in reducing the cerebral infarction volume and in increasing the number of neuronal precursor cells in the subventricular zone of the rat brain. MK mRNA and MK protein were found in spinal cord motor neurons of the anterior horn in both the acute phase of sciatic nerve injury and 3 weeks later. MK immunoreactivity was also found in the proximal side of a sciatic nerve‐injured site in sciatic nerve axons. MK receptors were expressed in Schwann cells after injury, suggesting crosstalk between axons and Schwann cells. MK was also present in nerve terminals and influenced ACh receptor clustering during neuromuscular development in Xenopus. Thus, MK may also be involved in reinforcing and maintaining the synapse. All these findings indicate the therapeutic potential of MK for promoting repair of the nervous system after injury.


Pathology Research and Practice | 2016

CCAAT/enhancer binding protein β (C/EBPβ) regulates the transcription of growth arrest and DNA damage-inducible protein 45 β (GADD45β) in articular chondrocytes

Hirofumi Shimada; Miguel Otero; Kaneyuki Tsuchimochi; Satoshi Yamasaki; Harutoshi Sakakima; Fumiyo Matsuda; Megumi Sakasegawa; Takao Setoguchi; Lin Xu; Mary B. Goldring; Akihide Tanimoto; Setsuro Komiya; Kosei Ijiri

Osteoarthritis (OA) is a whole joint disease characterized by cartilage degradation, which causes pain and disability in older adults. Our previous work showed that growth arrest and DNA damage-inducible protein 45 β (GADD45β) is upregulated in chondrocyte clusters in OA cartilage, especially in the early stage of this disease. CCAAT/enhancer binding protein β (C/EBPβ) is expressed in the hypertrophic growth plate chondrocytes and functions in synergy with GADD45β. Here, the presence and localization of these proteins was assessed by immunohistochemistry using articular cartilage from OA patients, revealing colocalization of C/EBPβ and GADD45β in OA chondrocytes. GADD45β promoter analysis was performed to determine whether C/EBPβ directly regulates GADD45β transcription. Furthermore, we analyzed the effect of C/EBPβ on Gadd45β gene regulation in articular chondrocytes in vivo and in vitro. Immunohistochemical analysis of C/ebpβ-haploinsufficient mice (C/ebpβ(+/-)) cartilage showed that C/ebpβ haploinsufficiency led to reduced Gadd45β gene expression in these cells. In vitro, we evaluated the effects of conditional C/EBPβ overexpression driven by the cartilage oligomeric matrix protein (Comp) promoter in mComp-tTA;pTRE-Tight-BI-DsRed-mC/ebpβ transgenic mice. C/EBPβ overexpression significantly stimulated Gadd45β gene expression in articular chondrocytes. Taken together, our data demonstrate that C/EBPβ plays a central role in controlling Gadd45β gene expression in these cells.

Collaboration


Dive into the Fumiyo Matsuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ko-ichi Kawahara

Osaka Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge